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Abstract—Real-time remote teleoperation of robotic arms, 
either industrial or humanoid, is highly desirable for a number 
of applications, especially in difficult or inaccessible 
environments. Here, we present a system for teleoperation of 
an industrial arm commanded through human-arm motion 
capture, as well as a bi-partite evaluation. Usually, 
teleoperation is driven by buttons, joysticks, haptic controllers, 
or slave-arms set, necessitating further training. In contrast, in 
our system the desired trajectory of the arm is easily and 
naturally controlled through imitation of simple movements of 
the operator’s physical arm, obtained through motion capture. 
Furthermore, we present an extensive evaluation of the 
performance of our system, containing: first, task-related 
measurables for a fixed task performed by numerous 
previously untrained subjects; and second, user-
opinion/attitude data obtained through a questionnaire 
administered to experimental subjects. Aspects of the system as 
well as results are discussed, and future extensions presented. 

I. INTRODUCTION 
Numerous application domains of robotics make the 

physical co-presence of human operators nearby the robot 
difficult, for example, hazardous or radioactive 
environments, space, etc. Furthermore, towards full-body 
android telepresence, teleoperation is implicated as one of 
the key supporting technologies. Quite some research on 
teleoperation has take place [1], but most systems rely on 
unnatural controllers, such as joysticks, which require 
previous training. Notable exceptions do exist, for example a 
demonstration of the benefits of using human natural arm 
movement for controlling an excavator [2]. In that paper, the 
authors claim to solve two problems usually related with 
excavators: high risk involved in the operation, and difficulty 
inherent of manipulation by joysticks. The authors use a 
combination of orientation sensor, rotary encoder, and 
inclinometer to read the human arm and hand movement and 
transmit the data to a computer through bluetooth, which 
then controls the excavator. In another related work [3], the 
authors used optical motion caption to copy the operator’s 
arm and head movement to an android. Their intention was 
to create a natural human-like movement on the android as a 
way of improving the interaction between it and humans. In 
our system, we use real-time motion capture, for easy and 
intuitive teleoperation of an industrial arm, by simple 

imitation of human arms movements towards completing 
pre-specified tasks. Regarding the important problem of 
correspondence choice between imitator and imitated (robot 
and human in our case), the reader is primarily referred to the 
extensive analysis in [4], and also to [5]. Our system 
comprises the following three steps (see Fig. 1): first, the 
operator’s arms movements are captured using optical 
motion capture; second, we choose an appropriate 
correspondence, and we apply geometric transformations to 
the data received from the motion capture, sequence them, 
and translate them to the robot command language; third, we 
send the data to the industrial robotic arm. Furthermore, user 
feedback is provided through two visual and one auditory 
channel. Apart from the naturalness and the choice of the 
controllers, another important aspect of relevant research is 
the evaluation of the complete system. Although time-delay 
as well as limited spatial aspects of the performance of such 
systems has been reported, to the best of our knowledge, no 
task-based evaluation of the reaction of unskilled people 
during teleoperation of an industrial robotic arm has yet 
taken place. Therefore, an extensive evaluation also 
including task-based as well as user-satisfaction and attitude 
data is presented here, as we discuss below.  

 

Figure 1.  Teleoperation System Block Diagram 
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II. THE SYSTEM 
The tele-operation system consists of five major 

subsystems: Motion Capture, CyberGlove, TeleOp 
Controller, Robotic Arm, and User Feedback (Fig. 1).  

A. Motion Capture Susbsystem 

The motion capture subsystem, consists of cameras 
operating at VGA resolution (640 x 480) supporting up to 
200fps (Standard Deviation brand). The cameras have 
infrared LED rings around them, and are placed at a height 
of 2.62m on the corners as well as the short-side midpoints 
of a rectangle with size 6m by 4.80m. The effective capture 
area thus has a footprint of roughly 3m diameter.  The 
human is wearing a special suit on which 19 reflective ball 
markers of diameter 2.5cm are placed. Three types of suits 
were used (Fig. 2): either strap-based for western-dressed 
humans, white traditional emirati dresses for men, and black 
traditional emirati dresses for women. The software API of 
the mocap system exposes a number of methods in C++, 
which enable the quasi-realtime readout of the 3D positions 
of the tracked markers.  

B. CyberGlove Subsystem 

The 5DT Ultra Series 14 gloves are used, which can 
produce 14 finger measurements plus 2 accelerometer 
readings. The gloves provide triggers for controlling the 
gripper of the robotic arm. 

C. TeleOperation Controller Subsystem 

The controller reads out the marker position timeseries 
from the motion capture, performs coordinate mapping and 
correspondence (Fig. 3), checks limits of movement, and 
issues appropriate commands to the robotic arm.  

Correspondence choice and Coordinate mapping: We 
have limited our choice of what the robotic arm should 
imitate to a simple hand position on a cartesian space. 
Therefore, our system captures the human subject's right 
hand position relative to his own arm position and map it to 
the robotic arm's hand coordinates. The robotic arm 
controller takes care of doing the inverse kinematics and 
moving its motors in a way its hand goes to the requested 
position. Two markers on the subject are necessary to 
perform this operation: the right wrist marker (RW) and the 
right shoulder marker (RS). The 3D coordinates of the 
subject's hand are computed by subtracting the coordinates 
of the RW marker from the ones of the RS marker. As the 
robotic arm and the human arm are not of the same size, and 
even different among various subjects, we empirically 
computed a scale factor in order to match the subjects' fully 
extended arm to the robot' fully extended arm. Therefore, the 
coordinates acquired from the motion capture system are 
multiplied by this factor before being sent to the robot.  

The robotic arm also has the ability of moving its hand 
relative to its wrist. We have chosen to map this movement 
to the subject left arm. Therefore, we have made a 
correspondence between the subject's left elbow angle to the 

direction of the robotic arm's hand. When the subject's left 
arm is fully extended, the robotic arm's hand points 
downward and when it is fully contracted, the robotic arm's 
hand points upward. To compute this angle, we used three 
markers: left wrist (LW), left elbow (LE), and left shoulder 
(LS). These markers can be seen as a triangle and, thus, the 
elbow marker can be easily computed using the cosine rule. 

Limits of movement: Due to security reasons, we have 
limited the robotic arm's movement to 180 degrees on the X 
coordinate. This means that the subject can move its arm to 
points where the robot can't, but the robotic arm only goes 
where it would not crash into its surrounding objects and 
break itself. Furthermore, the robot’s gripper is not allowed 
to go below the floor level, up to a safety margin. 

Temporal and Software aspects: Another limitation of 
the robotic arm is on the data rate it can receive. Its controller 
ignores commands sent when it is performing a movement 
and thus we implemented a synchronized communication 
between it and the teleoperation controller. The tele-
operation controller software was developed in Java 6 and 
integrated with the C++ API of the mocap subsystem, using 
Java Native Interface (JNI). 

D. Robotic Arm Subsystem 

The ST Robotics ST 17 manipulator arm is used, which 
has 5 degrees of freedom on the body, plus one for the 
gripper. Communication to the robot is achieved through a 
virtual serial port fed by IP, in the form of RoboForth 
messages. The workspace of the robot is contained within a 
hemisphere of one meter radius.  

E. User Feedback Subsystem 

User Feedback is provided through three channels: two 
visual, and one auditory. The visual channels are video feeds 
from two cameras placed in the robot's location: one on the 
gripper, and one on a tripod behind the robot, overlooking it 
from an angle. The video feeds are shown on two 40" LCD 
screens in the room of the operator. Auditory feedback is 
provided through a microphone in the robot location driving 
a speaker system in the operator location. The feeds are 
delivered through proprietary camera software, and the VLC 
player has also been used in the past.  

 

 

Figure 2.  MoCap suits with markers: Western (L), Emirati Women (M), 
Emirati Men (R). Notice the CyberGlove on the left hand in L 
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Figure 3.  Correspondence choice: Human R hand controls robot position 
up to wrist, R palm controls gripper, L hand controls robot wrist  

III. TASK-BASED EVALUATION 
The purpose of our evaluation was to provide real-world 

experience to our experimental subjects in tele-operation, to 
investigate the effectiveness of the design choices for our 
system, and also to create a task transcription and modeling 
framework which can be used to provide a firm basis for 
investigating effect of design choices, user variability, as 
well as aspects of user adaptation and fatigue. 

A. The Task 

The task chosen was to move three balls from their fixed 
home positions to their target positions. The task was 
designed so that it had intermediate difficulty, so that we can 
get meaningful results, without being neither impossible nor 
trivial. The layout of the workspace for the task is shown in 
(Fig. 4). The home positions had a 1.5cm elevation from the 
floor, while the target positions had a paper underneath them 
with concentric circles marked with 1cm-10cm signs 
corresponding to the accuracy of the placement. 

 

Figure 4.  Task Setup: Robot, balls in home positions, and target markers 

B. Administering the Task 

The subjects were first exposed to a 5-minute 
introduction of system usage by the person who was 
administering the task (competent user). Then, the goal of 
their trial was made explicit: to try to move all the balls to 
the targets with maximum placement accuracy, as fast as 
possible, but within 10 minutes. An explicit scoring function 
was also given to them, in order to remove the arbitrariness 

of subjective weighing of the two components of the goal: 
first, the number of balls successfully placed (n), taking into 
account the accuracy of placements (a1, a2, a3) in cm and 
second, the total time (t) in minutes. I.e. the subjects were 
told that they had a maximum of 60 points, out of which 30-
(t*3) points for total time, and 10*(10-a) points for the 
accuracy of each ball (which would default to 0 if the ball 
was not successfully placed). The main purpose of this 
function was to direct equal importance to both components 
of the goal for the subjects, so that they don’t concentrate 
more on one of the components, and thus introduce bias. 
After the goal was made explicit, the subjects were given 5 
minutes to play with the system, and then their up to trial 
time started (maximum allowed duration 10 minutes), during 
which video recordings as well as system log files were kept. 

C. Transcription and Modelling 

Each trial was analyzed on the basis of six different types 
of events: Start, Unsuccessful Grip (UG), Successful Grip 
(SG), Unsuccessful Placement (UP), Successful Placement 
(SP), and End. Each trial was thus transcribed as a sequence 
starting with a Start event, containing a number of UG, SG, 
UP and SP, and finishing with End. These event sequences 
were also augmented with the time intervals between the 
events. Transcription was done by humans on the basis of the 
video recordings. The chosen underlying model for the 
observed data was a probabilistic automaton with 6 states, 
corresponding to the 6 events. The transition probabilities as 
well as the transition durations for this automaton were thus 
estimated on the basis of the observed data, as we shall see.  

D. Repetitive Trials 

While most of our subjects only had one trial on our 
system, we chose to perform repetitive trials for a subset of 
our subjects in order to start investigating learning and 
fatigue effects, as we shall see in the results section. 

IV. OPINIONS AND ATTITUDES EVALUATION 
The purpose of this evaluation was to: a) illuminate 

opinions and attitudes towards the use of tele-operation in 
different application domains, b) assess the estimated 
emotional reaction of people in the subject’s social circle 
towards the system, c) to see whether the system demo 
stimulated subjects to learn more about robotics and tele-
operation,  d) to gather comments for system improvements.  

A. The Questionnaire 

The questionnaire had the form of a single-sided A4 
sheet, and was available in two languages: Arabic and 
English, which the subjects could choose.  It was partitioned 
in five parts: demographic questions, opinions and attitudes 
towards applications, estimated emotional responses, 
wanting to learn more, and suggestions / comments [6]. The 
demographic questions queried country of birth, age, sex, 
college education. Regarding a) and b), a 4-point modified 
likert scale was used (forced choice), with strongly disagree 
(1), slightly disagree (2), slightly agree (3) and strongly 
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agree (4) boxes. Regarding a) the seven application areas 
queried were: medical, workplace, child instruction, games, 
communication with people, dangerous environments, and 
space. Regarding b) the four emotional responses queried 
were happy, comfortable, angry and afraid.  

B. Administering the Questionnaire 

The subjects were given the questionnaire in our lab after 
going through a standard five-minute introduction to tele-
operation, during which a video of our system was shown, as 
well as a video of android teleoperation, and the benefits of 
the technology were explained. Most of the subjects that 
completed the questionnaire also tried out the system 
themselves. 

V. RESULTS 
Demographics as well as results for the task-based and 

the questionnaire evaluation are presented in this section.   

A. Demographics 

29 subjects completed the questionnaire, out of which 23 
also tried out the system themselves. Of the 29 subjects, 18 
(62%) chose to complete the questionnaire in Arabic, and 11 
(38%) in English. 24 of the 29 subjects, 24 (82%) were UAE 
nationals, 2 Iranians, as well as 1 Palestinian, 1 Greek, and 1 
citizen of the USA. Their age ranged between 17…43, while 
23 out of the 29 subjects were UAEU students aged between 
17…22 years old. The female to male ratio was 12:17, i.e. 
approximately 3:4.    

B. Attitudes towards Applications of Teleoperation 

The results of the attitudes towards the seven application 
areas are presented in (Fig. 5). One can observe that: (note 
that here, by agree we refer to the sum of slightly and 
strongly agree, and by disagree to the sum of slightly and 
strongly disagree, rounding to 1%) 

Hospital: 66% agree, Most: slight agree  

Workplace: 83% agree, Most: strong agree  

Child Instruct:  31% strong dis, 52% slight agr (bimodal) 

Games:  93% agree, Most: strong agree 

Comm w Human: 79% agree, Most: slight agree 

Dangerous: 93% agree, Most: strong agree 

Space:  100% agree, Most: strong agree 

One can conjecture the following preference ordering for 
teleoperation applications (order of decreasing preference): 

Strong Agree: Space, Dangerous environments, Games 

Slight Agree: Workplace, Remote comms, Hospital 

Bimodal Slight Agree/Strong Disagree: Child Instruction 

After a quick investigation, it was found that the sex 
(male/female) or age group (17…22 vs. 23…) of the subjects 

could not predict the two categories (slight agree or strong 
disagree) apparent in the bimodality of the attitudes towards 
the use of robots for child instruction. 

C. Estimated Emotions of Peers 

The estimated emotions of peers questions were querying 
four descriptors of affective states: happy, comfortable, 
angry, and afraid. The first two have positive valence, the 
second two negative. From the results in (Fig. 5), one can see 
that (see comments of subsection above): 

Happy:   97% agree, Most: strong agree 

Comfort:  72% agree, Most: slight agree 

Angry:   86% disagree, Most: strong disagree 

Afraid:   83% disagree, Most: strong disagree 

Thus, one can conjecture that subjects estimate that their 
peers (belonging to their social circle) would generally feel 
happy if they saw the demo. However, the subjects would 
only slightly agree that their peers would feel comfortable. In 
contrast, the subjects estimate that their peers would 
generally not feel angry or afraid. 

 

Figure 5.  Questionnaire results in histogram form for the seven 
application domains, and the four estimated emotions of peers 

D. Willingness to learn more 

Twenty five out of 29 subjects answered the two 
―willingness to learn more after demo‖ questions.  All 25 
(100%) answered positive to the question whether they 
wanted to learn more about robotics, while 2 out of 25 
answered No regarding whether they wanted to learn more 
about teleoperation, and 23 out of 25 (92%)  answered Yes.  

E. Suggestions and Comments 

Nine out of 29 subjects provided suggestions and 
comments, 6 of which contained suggestions, regarding 
speed, smoothness, delay, and size: ―Make it more smooth at 
move‖, ―I think it be smaller to be easy to use‖, ―Shorter 
delay more accurate movements‖ etc., and 3 of which were 
congratulatory:―It was great, I like it very much‖ etc. 
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F. Task-based Evaluation: Overall Metrics 

As mentioned above, the task was chosen in order to 
have intermediate difficulty, situated between the trivial and 
the impossible. For example, our gripper design and the soft 
balls used often resulted in unsuccessful grips, if the grip 
position was not precise enough. Across 69 trials, we 
evaluated the following overall metrics: 

Task time per ball (first event to last event): 

Median 16sec, Mean 22.7sec, Std 20.7sec 

Task final states: 

Success (SP) 60.8%, Fail 39.2% (UP 11.6%, UG 27.6%) 

Accuracy for successful placements: 

Median 6cm, Mean 5.5cm, Std 2.9cm 

Number of states per trial: 

Median 2, Mean 2.73, Std 1.56 

Ratio of overall number successful to unsuccessful events: 

SG:UG = 0.92, SP:UP = 2.27 (UGs are often repetitive) 

Ratio of probability of Success/Failure of Grip: 

P(SG|Start):P(UG|Start) = 1.32 

 Ratio of probability of Success/Failure of Placement: 

P(SP|SG):P(UG|SG) = 2.33 

Accuracy Component of Score (0 for UP, 10 for 0cm Acc): 

Median 8, Mean 7.8, Std 5.6 (Sum across three balls)  

Time Component of Score ((600-Ttotsec)/600*30): 

Median 23.2, Mean 22.0, Std 3.46 

Total Score (accuracy + time components): 

Median 29.85, Mean 29.8, Std 7.37 

G. Task-based Evaluation: Derived Model 

The probabilistic finite state machine that was derived  
from our observations can be seen in Fig. 6. Transition 
probabilities were calculated from the transition matrix 
resulting from our observations (69 = 3 balls x 23 subjects). 
Histograms of the transition time distributions are in Fig. 7. 

 

Figure 6.  Probabilistic Finite State Machine Model of Task 

 

Figure 7.  Time interval distributions for state transitions 

H. Observations on Derived Model  

The derived model, which can be packaged in the form of 
a transition matrix T, together with the six transition time 
distributions P(Δt|Si,Sj), and the placement accuracy 
distribution P(r), provides for a compact description of the 
performance of the system across users for a single trial, and 
overall metrics can generally be derived by it. Various 
observations follow directly: first, according to the score 
distribution, indeed we have a task which is neither trivial 
nor impossible; median and mean scores are very near the 
midpoint of the scale, with a decent amount of variance. 
Second, upon further analysis, lots of interesting patterns 
exist in the data: for example, have a look at Fig. 7: 
Following a successful grip (SG), there are two possible next 
events - a successful placement (SP) and an unsuccessful 
placement (UP). The time interval between SG and the next 
event though is a pretty good predictor of whether it will be 
successful or not: intervals above 7.5 sec most often lead to 
success – and whoever rushes often fails - as the time 
distributions of SG to UP vs. SG to SP seem to indicate. 
More such patterns remain to be explored, and can be 
quantitatively supported using probabilistic argument, given 
more empirical data. The most important observation though 
has to do with the possible semantics of the {T, P(Δt|Si,Sj), 
P(r)} description given alternative experimental settings. 
One can thus ask: how can one try to deconvolve the effects 
of correspondence choice, user feedback channel, operator 
ability, learning, and fatigue through such models?  

I. Toward insights on Fatigue and Learning 

Towards investigating the previous question, five out of 
the 23 first trial subjects were chosen to continue upon a 
longer-term study. First, each went through a second 
prolonged nine-ball session, four days after the first trial. 
Subsequent sessions are planned, spaced out in time, and 
with varying lengths. Initial observations indicate a learning 
effect across sessions, summarized by increasing scores 
across sessions, as well as a fatigue effect for heavily 
prolonged sessions, summarized by a score decrease on later 
trials within a long session. Apart from the score 
summarization, specifics on the nature of the increase or 
deterioration, as well as quantitative dependencies, await for 
more data in order to provide empirical support.   
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VI. FUTURE EXTENSIONS AND DISCUSSION 
Many possible avenues for future extensions exist. 

Currently, we are pursuing an extension of the population 
taking part in our evaluations, and mainly the longer-term 
multi-session multi-trial evaluations towards insights on 
fatigue and learning described above. Another avenue that 
we plan to pursue is concerned with the investigation of the 
effectiveness of our design choices regarding human- to 
robot- correspondence. Initially, we had experimented with a 
glove-less system, in which a different degree of freedom of 
the human left hand was utilized for controlling the gripper. 
However, this was found to be highly confusing and difficult 
to learn for pilot subjects. Still, it is not clear that the current 
correspondence choice is by any means optimal; so further 
choices could be potentially investigated. Furthermore, it 
was noticed that the current two-camera setting for user 
feedback often does not provide an accurate perception of 
depth when approaching the ball, which results in 
misestimation and grip failures. Thus, we plan to investigate 
alternative camera placements for better results.  

Also, many interesting possibilities for pattern 
recognition and prediction problems based on our task model 
exist: for example, one could try to predict the score of an 
individual on the basis of the first 10 seconds or the first ball 
of his trial; and one could even try to investigate if 
recognition of an individual through his task-signature is 
possible, for suitably modified tasks.  

Finally, yet another direction which we have started 
pursuing is migrating our teleoperation system to our 
conversational Arabic-speaking android robot Ibn Sina 
[7][8]; in which case it will be used for motion training as 
well as embodied robotic telepresence, and will cover two 
hands as well as facial expression imitation. Ibn Sina is part 
of an interactive theatre, in which various modes of tele-
participation are supported, including human-robot 
interaction through avatars in virtual worlds, remote brain-
computer interfacing teleoperation etc. 

VII. CONCLUSION 
In this paper a system for teleoperation of an industrial 

arm commanded through human-arm motion capture was 
presented, as well as a bi-partite evaluation. Real-time 
remote teleoperation of robotic arms, either industrial or 
humanoid, is highly desirable for a number of applications, 
especially in difficult or inaccessible environments. Usually, 
teleoperation is driven by buttons, joysticks, haptic 
controllers, or slave-arms set, necessitating further training. 
In contrast, in our system the desired trajectory of the arm is 
easily and naturally controlled through imitation of simple 
movements of the operator’s physical arm, obtained through 
motion capture. Apart from a detailed description of our 
system and the design choice made, we presented an 
extensive evaluation of the performance of our system, 
containing: first, task-related measurables for a fixed task 
performed by numerous previously untrained subjects; and 
second, user-opinion/attitude data obtained through a 

questionnaire administered to experimental subjects. During 
the task-based evaluation, which was tuned in order to be 
neither trivial nor impossible, a probabilistic finite-state 
machine task model was introduced, which when augmented 
with transition time distributions as well as placement 
accuracy distributions, results in a compact triad representing 
the performance of the coupled system-user pair. The 
applicability of this compact triad towards investigating the 
deconvolution of user, feedback, learning, and fatigue 
components of performance was discussed, and future 
extensions presented. Furthermore, interesting results arose 
not only from the task-based but also from the questionnaire-
based evaluation: for example, an ordering of desirability of 
a number of application areas for tele-operation arose as a 
conjecture – showing that most people strongly agree on the 
application of tele-operation for space or dangerous 
environments, but that there is potentially strong 
disagreement for a group of people regarding child 
instruction through tele-operated robots.  

In conclusion, through the presentation of a real-world 
system and a framework for modeling and evaluation, and 
through a task- as well as a questionnaire-based evaluation 
study, valuable results and insights were derived, towards the 
wider beneficial application of tele-operated robotics by 
untrained humans in an increasing range of application areas.   
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