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Abstract-Human cognition makes extensive use of visu- 
alization and imagination. As a ! h t  step towards giving a 
robot similar abilities, we have built a robotic system that 
uses a perceptually-conpled physical simuIator to produce 
an internal world model of the robot’s environment Real- 
time perceptual coupling ensures that the model is constantly 
kept in synchronization with the physical environment as the 
robot moves and obtains new sense data. This model allows 
the robot to be aware of objects no longer in its field of 
view (a form of “object permanence”), as well as to visualize 
its environment through the eyes of the user by enabling 
virtual sbifts in point of view using synthetic vision operating 
witbin the simulator. This architecture provides a basis for 
our long term goals of developing conversational robots that 
can ground the meaning of spoken language in terms of 
sensorimotor representations. 

I .  INTRODUCTION 

Consider what would be required for a machine to 
understand the meaning of a sentence such as ‘Touch 
the heavy blue block that was on my left:’ Human 
understanding of the concepts underlying this statement 
draws upon a variety of cognitive abilities, including 
object permanence (“the block”), object properties and 
relations (“blue,” “left”), category formation, theory of 
mind (“my”), working memory (“was”), visualization 
(“my left”), and knowledge of environmental affordances 
Cheavy”). Unless we endow robots with similar abilities, 
it is difficult to see how a robot can rmJy understand 
such a sentence, any more than a speech recognizer would 
“understand” its own transcriptions. 

As a step towards this level of deep semantic under- 
standing, we are developing a system with two tightly 
coupled components: a physical robot (called Ripley), and 
a physics simulator that serves as Ripley’s ”mental model” 
of the physical world. 

We refer to the general problem of connecting the 
meaning of words and utterances to a robot’s observations 
and actions as language grounding. Efforts have been 
made in the past to connect speech recognition systems 
io command-and-control robots (e.g.. [3], [lo], [13]; see 

[9] for a review of even more systems). Crangle and 
Suppes [4] present a detailed model of language mappings 
to robot perception and control that leads to a formal 
symbolic model of integrating grammar with semantics. 
This symbolic formal approach can be contrasted with 
work that emphasizes “subsymbolic” structures that link 
perception and action to the meaning of individual words. 
Along this latter approach, researchers have proposed de- 
tailed models for grounding the meanings of spatial terms 
[151, [161, color names [81, and verbs [I], [12], [21] in 
terms of sensorimotor associations. In our previous work, 
we adopted this approach of grounding words to develop 
several robotic and perceptually grounded systems that 
learn, understand, and generate natural spoken language 
D71, [181, [W. 

There are important limitations to grounding words 
in terms of first-person sensorimotor associations. For 
example, the meaning of the word “left” in earlier works 
implicitly assumed a frame of reference from the robot’s 
point of view. Even to use the word in simple conversation, 
however, a robot must be able to change points of view in 
order to see the difference between “my left” and “your 
left.” This ability of a listener to assume a speaker’s per- 
spective is not limited to spatial perspective. For example, 
the speaker might hold different beliefs on the meaning of 
words (e.g., concrete words like “red”). The listener who 
is sensitive to such differences in word meanings and is 
able to accommodate them is more likely to communicate 
successfully. We think of these as forms of “modulation” 
of grounded meanings. The full spatial grounding of “left” 
is similar to the one from the first-person point of view, 
but the perspective shift operator serves to modulate the 
grounding so that it can be used more flexibly. 

To explore the use of modulated grounded semantics, 
we have developed Ripley, a robotic manipulator with 
grasping capabilities and a multimodal sensory system, 
including stereo color vision, touch, and proprioception. 
Ripley’s physical world is simple; it consists of a table 
with simple objects (such as beanbags and similar-sized 
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items), and a human communication partner seated across 
the table. The robot’s sensory system provides the required 
connections to reality, with cameras for visual object 
detection and sensors for joint positions, motor forces, and 
finger pressure. 

As the robot moves about, sensory signals are used 
to drive a dynamics simulator of a 3-D world of rigid 
objects. Virtual objects, corresponding to the real, visually- 
detected objects, are instantiated on the basis of perceptual 
evidence. A virtual version of the robot follows the real 
robot through its motions and gestures, driven by data 
from the robot’s joint position sensors. The position of 
the human user is registered, providing an external point 
of view to work with. The positions and properties of 
the objects are updated using new visual information, and 
when objects leave the field the simulator can continue to 
estimate their positions. 

The motivation for connecting a physical system to a 
virtual simulator in real time comes chiefly from studies 
of mental imagery (see [7] for a review). These show not 
only that humans make extensive use of their visualization 
abilities for everyday tasks, but also that the visualization 
processes use the same sensory cortices that process real 
input. The simulation in our system provides an analogue 
to this cortical reuse, granting the ability to perceive real- 
world scenes in the same manner as imaginary scenes. 

Apart from visualization, the simulator also provides a 
foundation for object permanence. Visually-detected ob- 
jects are instantiated in simulation and persistently tracked. 
The simulator also includes a memory function that keeps 
a full bistory of world states and events and can be used 
to ground language that refers to the past, such as “the 
block that you were just holding.” Finally, the simulator 
enables the system to view the environment from any 
spatial perspective. This last ability includes visualizing 
the world through the eyes of the human user. This ability 
to assume arbitrary spatial perspectives is critical for 
differentiating the meaning of phrases such as ‘*my left” 
and “your left”. More generally, it has been suggested that 
the ability to project the world through the perspective of 
another intentional agent plays a pivotal role in children’s 
language acquisition 121 and thus is an important ability 
for conversational robots. 
In summary, the simulator enables two major, “per- 

spective shifts”: shifts in space (to view an object not 
in the physical line of sight, or to sbift perspective), 
and shifts in time (to view a past scene). Combmed 
with other perceptual processing, these abilities form a 
set of basis functions, representing elements of semantic 
concepts, with which words and linguistic phases can be 
associated (see our previous work for examples of learning 
such associations). This in turn lays the groundwork for 
conversational robots. 

Fig. 1. Ripley. Joints at the base, elbow, and behind the head 
allow fluid movement about its tabletop domain. Notice also 
the cameras facing forward from the head, the gripper claw (in 
the open position), and the handle atop the head for direct user 
manipulation. 

11. RIPLEY: AN INTERACTIVE ROBOT 

Ripley was designed specifically for the purposes of 
exploring questions of grounded language and interactive 
language acquisition. The robot has a range of motions 
that enables him to move objects around on a tahle- 
top placed in front of him, and to look around at the 
surrounding people and environment. In order to enable 
a meaningful sensorimotor grounding of verbs, Ripley’s 
design included several specific elements: 

Ripley’s body consists of a long ann with a gripper- 
claw at the end for manipulating objects. This pm 
vides the potential for grounding verbs l i e  “touch,” 
and “lift.” 
Ripley’s “head” is also at the end of the arm and 
contains two cameras. This, along with its range of 
motion, causes the visual perspective to shift, making 
the notion of a shifting viewpoint an integral part of 
the system. . Ripley has compliant joints and training handles, 
which enable the human user to demonstrate gestures 
while narrating to provide linguistic associations. 

A. Structure and Actuation 

The robot (see Fig. 1) has seven degrees of freedom 
(DOF‘s). Each DOF other than the gripper is actuated 
by series-elastic actuators [14], which enable the force 
applied by the motors to be coutrolled directly, in contrast 
to motors which are controlled by speed. The use of series- 
elastic actuators gives Ripley the ability to precisely sense 
the amount of force that is being applied at each DOF, 
and leads to compliant motions, in which the robot is 
aware of external forces and can choose how strongly to 
compensate. 
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B. Basic Motion Control 

Motion control in Ripley is inspired by studies of motor 
force fields in frogs [ll]. In essence, frogs’ limbs are 
controlled by internally-represented force fields, which 
cause a given limb to converge on a single point, and this 
convergence point is moved smoothly along the planned 
trajectory of the l i b .  As a rough approximation to this 
method, a position-derivative control loop is used to track 
a target point that transits smoothly from the starting point 
of a motion gesture to the end point. Forces are computed 
every five milliseconds, based on trajectories computed by 
the host computer. 

Manual training of the robot allows the user to demon- 
strate new gestures by moving Ripley l i e  a puppet. This 
requires that the robot be easy to move. To this end, we 
set up a training mode in which Ripley exerts just enough 
force at each joint to counteract gravity, using a forward 
kinematics model to predict the force of gravity on each 
joint, which is then cancelled by forces from the actuators. 
Motion interpolation algorithms are used to generalize 
from trained trajectories to novel motions as dictated by 
new perceptual contexts. 

C. Sensory System and visual Processing 

Complementing Ripley’s motor system is a perceptual 
system, with two color video cameras, a two-axis tilt 
accelerometer (for sensing gravity), and two microphones 
mounted in the head. Force sensitive resistors provide a 
sense of touch on the inside and outside surfaces of the 
gripper fingers. 

One of the most important sets of sensors is embedded 
in the actuators. As described above, the actuators are 
force-controlled, meaning that the amount of force being 
applied at each joint can be sensed by virtue of being con- 
trolled. Additionally, each DOF is equipped with absolute 
position sensors, providing data for all levels of motion 
control and for maintaining the anti-gravity mode. 

The vision system is responsible for detecting objects 
in the robot’s field of view. Background and foreground 
Gaussian color models are applied to detect connected 
regions at a frame rate of 10 Hz. The detected visual 
regions are passed along to the “Objecter” module, de- 
scribed below, which integates region analyses over time 
to determine the presence and properties of objects in the 
scene. This vision model is very simplistic and requires 
not only that objects be single-colored, but also that they 
be in the plane of the table so the simulator can adequately 
infer their 3-D positions (more detail below). However, 
this system is sufficient for examining our mental model 
(which is the primary purpose of this paper) and we 
are starting to look into more sophisticated 3-D vision 
algorithms with more complex object models. 

r 

Fig. 2. Block diagram of our system. Sensory information 
is processed and passed to the simulator’s mental model and 
memory. 

111. A PERCEPTUALLY-DRIVEN “MENTAL MODEL” 
At this point, we a~ ready to feed the sensory in- 

formation into a “mental model.” In our approach (see 
Fig. 2). Ripley’s simulator (SimRip) integrates real-time 
information from its visual and proprioceptive systems to 
construct an internalized mental model, which tries to best 
explain the history of sensory data that has been observed. 

Brian Cantwell Smith has argued for the fundamental 
i m p o m c e  of the ability to internalize and track objects, 
in order to retain awareness of them even when direct per- 
ception fails. In his words, “the retraction of responsibility 
into the [subject] to compensate for the loss in effective 
coupling [with the object] - this is the origin of reasoning, 
representation and syntax” [221. 

Aside from object permanence, the simulator also al- 
lows Ripley to envision its world through the eyes of 
the human user. After the persistent objects have been 
instantiated, it is a simple matter to have the point of view 
rotated across the table to the perceived location of the 
user. Extraction of object features based on a dynamic 
viewpoint will allow the learning of novel aspects of 
conversation, as discussed previously. 

A. Physical Simulation 
In the heart of SimRip lies the ODE rigid body dy- 

namics simulator [23]. ODE handles masses of arbitrary 
geometries and updates the world in discrete time steps 
based on Newtonian mechanics. Support for collisions, 
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joints (restrictions of relative motion), soft second order 
constraints, and friction is provided by the ODE engine. 
Passive objects and human faces are modeled as single 
spherical ODE objects, while vRip’s body (Ripley’s self 
image living in SimRip) is modeled as a configuration 
of seven cylindrical links plus a rectangular head, with 
dimensions and masses approximating reality. The prop- 
erties of these objects (passive, face, and vRip’s body) 
form the state of the mental model. 

B. Coupling Perception ro the Mental Model 

Before using the visual input to inform the internal 
model, we must correct for noise in the vision system. 
Even with the simplistic environment, the object detector 
is still confused by camera noise, shadows, head motion, 
and model simplicity. All the visual attributes are subject 
to some noise, and a persistently detected object may even 
disappear for a frame or two. Furthermore, the motion of 
Ripley’s head and of the objects causes significant changes 
in the size, color, and position of objects. 

To compensate for such motion and noise, the object 
detector passes its input to the “Objecter” module, which 
filters out noise by tracking objects from frame to frame, 
within the 2-D field of view. To do this, it keeps a running 
database of objects that have been encountered. 

Visual objects consist of a size, a position, and a color. 
By using a distance metric on these features to compare 
objects in the database to objects passed from the vision 
system, it finds a minimal-distance mapping between the 
database and the visual frame. Any object that is clearly 
new (i.e., is very distant from objects in the previous 
frame) is labeled as such and added to the database. 
Objects in the database which have not been seen in a set 
number of frames are deleted. Finally, when an object in 
the database has been seen consistently enough, it is added 
to the list of objects to be instantiated in the simulator. 

By deleting and instantiating objects only after several 
frames, the Objecter thus serves to reduce noise and 
provide a son of hysteresis for object creation, helping 
to offset the effects of brief occlusion. It also allows 
the visual input to track an object persistently between 
frames, despite noise and motion. On the other hand, 
this tracking is done only in a 2-D domain, and objects 
that leave the field of view are soon forgotten. For this 
reason, the Objecter is similar to the human analogues 
of sensory memory and visual tracking. Higher-level, 3-D 
object permanence is reserved for the simulator itself. 

The other aspect of perception coupled to the simulation 
is the output of the proprioception system. This consists of 
a vector of seven angles uniquely determining the physical 
configuration of the robot, and a vector of forces applied 
by the actuators (useful for a sensation of “difficulty” 
of movement, e.g. in weighing or measuring softness of 
objects). 

These data streams are sent via network to the simulator 
program. The proprioceptive information is used to update 
the position of the virtual robot, and the processed visual 
information is used to update the positions and properties 
of the objects maintained within the simulation. 

C. Dynnmics and Memory in the Mental Model 

Prediction for the physical part of objects is already pro- 
vided by ODE, using numerical integration with Newton’s 
laws. Thus, thanks to ODE, an object that was instantiated, 
but which has left the visual field, will continue moving 
if it was last seen moving, and it may even move with a 
non-constant velocity if friction or other forces are taken 
into account. For instance, if an object’s trajectory passes 
through another object that was last seen stationary and is 
also out of view, then the collision will be predicted. 

Another problem indirectly simplified by the simulator 
is that of projecting the 2-D object data from the vision 
system into 3-D space. Because the positions of the robot’s 
head and the table are modeled accurately in the simulator, 
it is possible to estimate a 3-D position for objects based 
only on a 2-D input, which is ideal for our current, very 
simplistic vision model. When we transition to a more 
sophisticated 3-D vision system, this estimation will no 
longer be necessary. 

Using the simulator does not simplify everything, 
though. Using the sensory data to actually update the sim- 
ulation model requires additional processing, and several 
assumptions. A static viewpoint with unmoving objects is 
easy to model, but because objects can enter and leave the 
field of view, due either to motion of the objects or motion 
of the robot’s head, a more detailed model of permanence 
is needed. 

We begin with the assumption that there are very 
few “magical disappearances” [24]. Moving objects are 
expected to enter and exit through the borders of the 
field of view, and upon leaving they should be assigned 
the appropriate velocity and simulated in the absence of 
sensory input. Thus, even though the visual system (via the 
Objecter) stops tracking the object, the simulator continues 
to be aware of its existence. A few problems arise with 
this, such as objects apparently shrinking as they leave the 
field of view, because the part of the object that is visible 
gradually decreases. Also, objects moving quickly relative 
to the 10 Hz frame rate seem to magically disappear, 
Simple heuristics partially compensating for these have 
been implemented. 

Moving viewpoints present further complications. Our 
current implementation simply ignores object input while 
the robot is moving, but we are working on a system 
to stabilize the simulator world dynamically during robot 
motion. For instance, when an object enters the field of 
view during a perspective shift, it could either be a new 
object or an object previously tracked by the simulator. 
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To help determine this, a module similar to the Objecter, 
but working in 3-D, bas been written in the simulator to 
perform the necessary comparisons. 

In our current implementation of the simulator, we 
made several other simplifying assumptions as well. We 
already mentioned the use of the simulator to use 2-D 
data from only one camera to instantiate 3-D objects based 
on the position of the bead and the table. Likewise, the 
3-D position of the user’s head can also be estimated 
by projecting 2-D position information from a stock face 
detector onto a surrounding sphere. 

Also, objects are assumed io be spherical, and color is 
assumed to be homogeneous across an object. See Fig. 4 
for an example of object instantiation, corresponding to 
the visual input shown in Fig. 3. Furthermore, Fig. 6 and 
Figure 7 show two timesteps of an object being dragged 
across the table, as in Fig. 5. 

Finally, we have a simple memory system, which stores 
all the past states of the mental model. Thus, the history of 
objects can be retrieved, examined, and replayed thmngh 
different viewpoints, providing the foundation for ground- 
ing such constructs as verb tenses. 

Fig. 3. A physical scene as seen through Ripley’s camera. 

Iv. TOWARDS GROUNDING CONVERSATIONAL 
LANGUAGE 

Let us retum to the spoken utterance we considered 
earlier, “Touch the heavy blue block that was on my left:’ 
Given the coupled robot-simulator architecture that bas 
been described, we can now sketch how the words in 
this utterance might be grounded in terms of sensorimotor 
grounded structures in this system. ‘Touch” is grounded 
in a procedure that reaches towards targeted objects by 
interpolating human-trained motion trajectories. “Heavy” 
specifies a range of values from a weighing procedure. 
To weigh an object, Ripley grasps and moves the object 
up and down, gauging the force applied to determine the 
relative weight. In contrast to visual properties such as 
size and color, finding the weight of an object inherently 
requires motor interactions (similar to Gibson’s notion 
of affordances [5] ) .  “Blue” is grounded in terms of the 
color space from Ripley’s visual system. “Was” triggers 
an index back in time, which is supported by the event- 
based memory of Ripley’s simulator. Finally, “my left” 
can be grounded through a perspective shift to the human 
communication partner’s physical point of view. 

v. ONGOING WORK 

We are currently in the process of integrating speech 
processing [20], spatial language processing [6], and as- 
sociative learning [19] subsystems into the architecture 
described here. In addition, we plan to pursue several other 
directions. These include probabilistic representations of 
partial knowledge of object properties in the simulator, 
enhancement of the vision system to deal with partial 

Fig. 4. The same scene, recreated in the simulator model. 
triangles represent the axis of the table. 

The 

occlusion, more detailed modeling of object geometry, and 
grounding of manipulation verbs. 

Using our coupled simulation system, we have devel- 
oped a robot that can maintain simple object permanence 
and imagine its world through the eyes of its user. This 
provides it with a structured foundation upon which it 
can ground common phrases such as “on my left:’ These 
components, along with the others now being developed, 
will hopefully provide an enriched basis for robots that 
can engage in fluid, situated conversations with people. 

Fig. 5. The user pulls a ball across the table. 
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Fig. 6. The ball (on the left) in its initial simulated position. 

Fig. 7. The ball, pulled towards the table's edge. 
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