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Abstract— Experimental evaluation of navigation algorithms
requires physical robots as well as position sensing devices.
The common alternative is to use simulations to run the
experiments. However, simulation often does not provide an
accurate prediction of real-world behavior. Therefore, in this
paper, we present an innovative approach towards evaluation of
navigation algorithms, which does not need physical robots and
position sensors to be present at the experimenter’s site, but
relies on a special remote internet-accessible physical testbed,
the “Teleworkbench”, which can be used in order to evaluate
as well as uniformly cross-compare algorithms with no need
of spending money on hardware or simulation software. More
specifically, in this paper we are using the Teleworkbench to
evaluate three different path planning algorithms, and compare
it with simulation. Different metrics are proposed, such as the
path execution time, smoothness and path clearance deviations.
Our results clearly illustrate the superiority of the Telework-
bench as an evaluation platform in comparison to simulation,
which does not provide an accurate prediction of actual physical
performance, and thus illustrate both the viability as well as
the power of our novel approach.

I. INTRODUCTION

Traditionally, experimental evaluation of navigation algo-

rithms requires physical robots, as well as position sensing

devices, to be available at the experimenter’s lab. As an

alternative, many authors have used simulation in order

to run such experiments. However, simulation often does

not provide an accurate prediction of real-world behavior.

Therefore, in this paper, we present an innovative approach

towards evaluation of navigation algorithms, which does not

need physical robots and position sensors to be present at the

experimenter’s site, but relies on a special remote internet-

accessible physical testbed, the “Teleworkbench” [1], which

many remote experimenters can use in order to evaluate as

well as uniformly cross-compare their algorithms with no

need of spending money on hardware or simulation software.
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One of the first attempts to come up with a benchmark

definition in path planning is given in [2]. Many benchmarks

for motion planning have been already proposed, but these

approaches are very dependent on the used algorithms: prob-

abilistic planners [3], humanoid problems [4], GPU-based

algorithms [5] and so on. Recently, a generic simulation

infrastructure has been proposed for benchmarking mobile

manipulators path planning algorithms [6].

In spite of all these efforts, the benchmarks never go

further than simulations. Benchmarking with real robots

could be a very complex, time-consuming task and the

performance is not comparable among robots and implemen-

tations, because control parameters can highly influence the

results. Why is benchmarking in real robots important? There

are factors that simulations can hardly take into account:

perturbations (both spatial and temporal), deviations due to

errors, noise, etc. Some metrics such as plan execution time

or deviations between real and simulated plans are required

in order to check the reliability of the different algorithms.

The path following and control algorithm for the real robot

play a very important role in this benchmarking, and also

other subsystems of the robot, such as localization, odometry,

etc.

The Teleworkbench (TWB) offers a controlled environ-

ment in which users in any location can execute, test,

and compare their algorithms and programs using real

robots. The TWB also provides functionality for assisting

researchers and developers in several aspects of experimen-

tation using robots: (i) integration with a robot simulator, (ii)

download and execution of users’ robot programs, (iii) au-

tomatic environment building, (iv) data logging, (v) position

tracking of up to sixty-four robots, and (vi) a visualization

tool for experiment analysis. As experiments run in a con-

trolled and repeatably rebuilt environment, researchers can

reproduce and compare the results of the experiments. In

this paper we are using the Teleworkbench to evaluate three

different path planning algorithms and compare them with

the simulation results. The paths are computed offline in a
priori known, static map. Therefore, the scope is to evaluate

the planning algorithms independently, without taking into

account onboard sensors of the robots. The position of the

robots is provided by the TWB.

The paper is organized as follows: Section II describes

the architecture we propose for remote experimentation of

navigation algorithms. In Section III the complete setup

of the simulation and experiments is detailed. The results

are shown in Section IV. Finally, in Section V the main

conclusions of the paper are outlined.
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II. SYSTEM ARCHITECTURE

We focus on the point of view of the user who wants to test

a path planning algorithm. The most desirable characteristic

is that the experimentation procedure should be fully trans-

parent for the user. In this way, the user uploads a program

with the path planning algorithm to the Teleworkbench

Server and executes it remotely, as shown in Figure 1. The

user only has to care about the environment dimensions

adaptation and to output the computed path in a specific

format: a string sent via TCP/IP.

This string can be received by the robot controller, which

subsequently communicates it to either the Player/Stage

simulator [7] or the robots in the Teleworkbench. When the

message with the path is received, the robot localization and

path execution is done automatically. While the experiment

is running, the user is able to follow it thanks to video

streaming. Once the experiment finishes, a log is created

in which different data are collected such as robot positions,

sensor data, execution time, etc.

In the following, we describe the different modules of the

implemented architecture.

A. Path Planning - User

This module encapsulates the path planning algorithm and

all the additional steps which are necessary for the computa-

tion of the path: environment adaptation, path trimming and

conversion, etc. The user of the Teleworkbench only has to

deal with this module since it depends only on the algorithm.

Any path planning algorithm can be used, in any pro-

gramming language as long as the TCP/IP output satisfies

the established format (as described in Figure 1, we have

used Matlab compiled code in this paper). The focus of the

proposed architecture is mobile robot navigation. Hence, 2-

dimensional planning should be done, or 3-dimensional if

the heading angle θ is wanted to be include in the planning.

Depending on the algorithm employed, previous steps could

be required. For example, when running algorithms in which

the robot is taken into account as a point with no dimensions,

it is recommendable to dilate the obstacles of the environ-

ment by the radius or the robot. Otherwise the robot will

collide.

Once the path is obtained, it has to be adapted so that it can

be sent via TCP/IP commands to the robots. This adaptation

applies, for example, path trimming (uniform sampling of

the path so that it is not necessary to send all the points of

Teleworkbench
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Fig. 1. The deployment diagram of the experiments with Stage simulator
or BeBot minirobot.
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Fig. 2. The diagram showing the general system architecture of the
Teleworkbench system.

the path), heading computation for every point of the path

(if required), and so on.

B. Teleworkbench

The distributed system architecture of the Teleworkbench

is shown in Figure 2. Earlier papers [1], [8] describe the

Teleworkbench System in more detail. In this paper, we will

briefly describe the system and its main components.

The Teleworkbench comprises a main experiment field

of 3.6×3.6m that is partitionable into four sub-fields, each

of which can be used for an experiment independently. A

gripper module with four degrees of freedom (3 translational

and one rotational) enables automatic environment building

by using plastic blocks. Additionally, it can also be used

for placing robots at predefined locations and orientations.

Three different robotic platforms are currently supported

by the Teleworkbench: Khepera II, Khepera III [9], and

the BeBot [10]. Five 1-megapixel Gigabit-Ethernet cameras

are mounted above the experiment field, four of which are

assigned to the sub-fields and the other one monitors the

entire experiment field. Each camera is connected to a video

server that processes the video data to provide the GPS-

like position and orientation information of the robots as

well as to record and stream the video. Currently, up to 64

robots can be identified and tracked by means of barcode-

like markers that are placed on top of the robots. One server,

called the Teleworkbench Server, is responsible for schedul-

ing, queuing and execution of experiments. Additionally,

the server handles wireless communication among robots,

e.g. with Bluetooth or WLAN. Another server is assigned

for intermediating users and the Teleworkbench System. A

website is provided to support users in performing different

activities, e.g. experiments setup and execution, experiment

data acquisition, or live-monitoring. A file server is deployed

to store all data that accumulates during experiments.

The Teleworkbench aims to provide a seamless transition

from simulation to experiments with real robots. The same

environment model that is used in the simulator can be used

for the experiment. When the experiment is set and ready, the
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defined environment model is realized by using plastic blocks

arranged by the gripper module. Afterwards, the uploaded

programs are deployed and executed.

During experiments, the communicated messages among

agents are logged and can be retrieved after the end of

the experiment. At the same time, users can also observe

the experiment using the developed graphical user interface

(GUI) that can display the streamed live-video overlaid by

some robot information such as robot symbol, robot path,

sensor information, and exchanged messages (see Figure 3).

C. Robot Platform

The experiments and simulations detailed in this paper are

carried out with BeBot minirobots [10]. The robot controller

uses a modular and flexible robot software architecture (see

Figure 4), which is based on the schema-based architecture

of Arkin [11]. In this architecture, multiple concurrent pro-

cesses, called motor schemas, generate different behaviours

that are represented by a vector, whose value and angle

corresponds to the speed magnitude and orientation respec-

tively. The developed software architecture also provides

an abstraction of the robot controller, which allows the

easy deployment of different robot controllers on the robot.

Additionally, the robot software architecture is composed of

modules, each of which realizes one specific functionality.

Furthermore, the software architecture enables us to instill a

certain safeguard mechanism on the robot to tackle problems

due to erronous behaviours during runtime. For this study,

the robot controller contains one path follower schema that

enables the robot to traverse a given list of positions.

A server is also deployed on the robot to provide access

to the robot, e.g. to send commands to the robot. A

robot communication protocol has been defined, consisting

of a list of commands that the robot supports. The

command that is of interest in this study is the one for

sending a list of points that the robot has to traverse:

T, T, P, px1, py1, pa1; px2, py2, pa2; ..., pxn, pyn, pan,

where pxn,pyn, and pan are the position (x and y) and the

orientation (pan) of the target point.

D. Simulation Server

A simulation server is deployed to support simulation of

the robot controller before executing it on the BeBot. The
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Fig. 3. The GUI for online analysis tool. The API is used to communicate
with the Teleworkbench System as well as with the robots.
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Fig. 4. The robot software architecture based on motor schema architecture.

server runs a Linux operating system with the Player/Stage

robot simulator [7]. One robot server with access to the

aforementioned robot controller is also deployed on the same

machine. As in the case of the server running on the robot,

this robot server is also programmed to receive the same

commands, e.g. the robot path. The command will be sent

to the robot controller, which in turn translates it to the

command understood by the Stage simulator.

III. SIMULATION AND EXPERIMENT

DESCRIPTION

The proposed benchmarking architecture contains three

different steps: computation, simulation and experimentation.

The first stage, computation, comprises the path planning

algorithm as detailed in section II-A. In our case, this is

done with Matlab compiled packets.

The TWB supports the interoperability with the Stage

robot simulator. Depending on the IP address specified in

the previous step, the path will be simulated or executed

in the TWB. During our experiments, we simulated the

paths in order to verify them before proceeding with real

experimentation.

Finally, the last stage is the experimentation with BeBot

minirobots in the TWB. During the experiments, all the

necessary data for the metrics detailed in the previous section

are recorded.

The experiments comprise a total of 24 real trajectories.

Two different environments are used: a room like environ-

ment and one with blocks and several intersections, as shown

in Figure 8. Two different plans (set of start and goal points)

were requested in each environment. Also, for each plan,

three different path planning algorithms have been used.

Finally, each path planning algorithm was executed twice.

The path planning algorithms chosen are the Fast March-

ing Method (FMM), Fast Marchig Square (FM2) [12] and

Probabilistic Road Maps (PRM) [13], implemented with the

Robotics Toolbox [14]. These algorithms were chosen since

they are quite different from each other. FMM provides

optimal paths in terms of distance, but with sharp curves
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and runs too close to obstacles. Paths computed with FM2

are very smooth, but longer. And PRM provide stochastic

paths which are not smooth but faster in high-dimensional

spaces.

A. Metrics Employed

The metrics we have included in this paper are those

related to the execution of the path and to the comparison

between the computed path P0 and performed path Pr

(performed in the simulation as well as in the TWB):

• Path execution time - The time t (in s) the robot took

to follow the path from the initial given point until the

target is reached.

• Path deviation (error) - Path deviation ep (in mm) is

measured by dividing both paths into n points. For each

point of initial path another one is chosen on the real

path. This point is chosen so that the Euclidean distance

dE (error) is minimum.

• Path smoothness - The smoothness κ′ can be measured

in many different ways. We will use the smoothness

metric given in [6], which represents the standard devi-

ation of the angles along the path. Let αi be the angle

between two consecutive segments of a path divided

into m segments. Therefore, κ′ =
√

1
m−1

∑m
i=2 α

2
i . The

angle taken into account is illustrated in Figure 5.

• Path length - The path length l is approximated by

dividing the path into n points P = 〈p1, p2, ..., pn〉 and

computing l =
∑n−1

i=1 dE(pi, pi+1), where dE stands

for the Euclidean distance.

• Minimum Obstacles clearance - The metric dn con-

tains the deviation of the minimum distance of the

points along the path to the closest obstacles of the

environment.

• Average speed - This metric (given in m/s) is computed

as follows: v = lr/t.

IV. RESULTS

Graphs in Figure 6 show the results of the simulation

with Stage robot simulator and the experimentation with

the Teleworkbench in terms of the metrics described in

section III-A. In path deviation we also calculate a direct

comparison between the results of Stage simulation and the

Teleworkbench.

In Figure 7 the results for smoothness, clearance and path

length are shown as the ratio with regards to the initial, com-

puted path. The objective is to show the deviation between

the computed and performed paths (in both simulations and

real executions).
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Fig. 5. The angle between two consecutive segments of a path.

Many interest conclusions can be extracted from the

results. First, the duration of the real path executions in

the TWB take longer than in the simulated environment

(the top left graph in Figure 6), so the average velocity is

lower in real experiments (the top middle graph in Figure

6). In these two cases, the variation is not constant among

the algorithms. The top right graph in Figure 6 shows the

higher path deviation in real experiments is comparison to

the one in simulation. However, in this case the variation

among algorithms is almost constant. The results with the

minimum clearance follow the same pattern.

It is interesting that the path length deviation (the bottom

middle graph in Figure 6) shows similar results in simulation

and in real experiments. Finally, regarding path smoothness

(the bottom right graph in Figure 6), the controller is not

able to reproduce the paths as smooth as planned. The

most interesting point here is the smaller deviation between

simulation and TWB that occurs in the case of the PRM

algorithm, where the smoothness is lower.

Focusing on the ratios with the initial path, Figure 7, the

main conclusions can be extracted. The real experiments al-

ways reported worse results than the simulation: path length

ratio is always over 1, which means that it has increased, and

path length and smoothness are decreased. There is only one

exception, the smoothness of the PRM algorithm is improved

in this case. This is because the implemented controller is

not able to follow the sharp curves which a PRM path is

characterised for.

Therefore, the main conclusion of the result is that the

simulation of path planning algorithms is useful, but bench-

marking with results obtained only through simulation is not

enough. The application of the different algorithms in the

real world can have different results than those provided in

simulation. This is a known problem: simulations can be as

close to reality as desired, but to represent all the external

factors that influence the real performance is very complex

(and most of the times not worthy) task. Also, the main

problem that arises when executing algorithms in real robots

is that the deviations between simulations and real world are

not constant, as shown in the results of this paper.

Figure 8 shows the computed, simulated, and TWB-

generated robot path generated by the three algorithms in

two different environment configurations. The results show

that the simulated and TWB-generated paths are close to the

computed one. However, some overshoots are visible which

results from the inability of the P-controller used as the path

follower in this study to keep the robot always on track. This

issue is more prevalent in the results of the Teleworkbench.

The experiments in the Teleworkbench produce longer robot

path, as is shown in the path length graph of Figure 6.

In Figure 9, we can see the snapshots of the same

experiment running in the Stage simulator and the TWB.

The robot path is overlaid on the picture as well as on the

video. Using the Teleworkbench GUI, this can be done either

online (during runtime) or offline (after the experiment).
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Fig. 6. The results of the simulation with Stage simulator (with suffix S) and the experimentation with the Teleworkbench (with suffix T). Suffix ST is
to indicate the results of direct comparison between the simulation and experimentation with the Teleworkbench.
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Fig. 9. The snapshots of the experiments running on Stage simulator and
the Teleworkbench. The path of the robot is embedded on the video using
the Teleworkbench GUI.

V. CONCLUSION

In this paper we have introduced a novel architecture

to remotely test and benchmark path planning algorithms

using the Teleworkbench. Six different metrics have been

proposed in order to take into account the quality of the

implementations of path planners into real robots.

This infrastructure allows people around the world to test

a path planning algorithm very easily, without spending a lot

of efforts for implementing the algorithms in real robots and

dealing with the typical implementation problems.

Results show that when dealing with the implementation

of path planning algorithms in real robots the metrics ob-

tained in simulation are not completely valid in the real

world. Although this is highly dependent on the control

strategy employed, if the same controller is applied in all

the experiments similar results are expected.

For example, in our case the controller is not able to follow

such smooth paths as those given FM2. However, this is not

a problem since the paths computed with FM2 have a higher

average speed than those computed with FM or PRM. When

benchmarking path planning algorithms in simulation, these

issues are not usually taken into account, but they can be

very important in the real applications.

This infrastructure is also valid for testing and comparing

path following algorithms and motion controllers. In that

case, using the same path planning algorithm the same

metrics can be employed in order to compare the quality

of the controllers.

The future work focuses on including more algorithms to

the test and extending the benchmarking to other algorithms

such as multirobot path planners and planning with dynamic

obstacles. Also, the proposed schema is applicable to bench-

mark the influence of sensor noise and inaccuracies of the

control in the paths. In addition, it could be interesting to

compare the performance of the sensor models in simulation

with the real sensors.
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