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Abstract—This paper presents an efficient method for adaptive 

control of humanoid robot arms with biarticular muscles, 

which exhibits multiple beneficial properties. In our approach, 

sliding control was chosen to get joint torque first and then the 

joint torque was distributed to muscle forces. The muscle force 

was computed based on a Jacobian matrix between joint 

torque space and muscle force space. In addition, internal 

forces were used to optimize the computed muscle forces – and 

thus, two important benefits arise: through our proposed 

method, not only we are making sure that each muscle force 

stays within its predefined force boundary; but we are also 

enabling the muscles to work in the middle of their working 

range, which is considered to be an anti-fatigue state. Yet more 

benefit derived, comes from the fact that in our method all the 

dynamic parameters are updated in real-time, and can thus 

one can account for perturbations and disturbances during 

operation. Compared with previous work in parameter 

adaptation, a composite method was proposed which utilizes 

the prediction error to accelerate parameter convergence 

speed. Our method was tested for the case of reaching motions. 

The results clearly illustrate the benefits of the method. 

Keywords-muscle cooperation; redundancy; internal force 

I.  INTRODUCTION 

Traditionally robot arms are driven by motors, and 
usually, each motor drives a specific joint, and corresponds 
with an independent degree of freedom (DOF). Such a 
driven system has two main problems: First, if a motor is 
broken, the DOF corresponding to this motor will be 
completely lost. Second, the motors near the base link need 
to carry more load and thus need more power, leading it to 
the need for very heavy base motors. In contrast, when one 
compares the above state of affairs of traditional robot arms 
with the human movement system, one can see that there 
exist many advantages for the latter: First, as there are many 
muscles driving one joint, the total joint torque is distributed 
to every muscle. Thus, each muscle only has a relatively 
small load. Second, if one muscle is broken, the motion 
capability of the corresponding joint is not totally lost. As a 
result of the above observations, mimicking such aspects of 
the human body seems to be a promising research direction. 
Recently, there has been quite some work focusing on bionic 
arms [1-4]. In our paper, we propose a muscle control 
method for humanoid robot arms driven by biariticular 
muscles, which can also be easily extended to more 

complicated configurations. Our control method is designed 
to be adaptive, i.e. robust to the perturbation and 
disturbances from environment. In addition, the muscle 
forces that are produced have to satisfy preset boundary 
force limits. Finally, the method has to be efficient enough 
for practical application. 

Towards our endeavor, we had to face two main issues, 
namely Redundancy and Adaptivity. Let us start we the first: 
There exist two types of redundancies. Type I redundancy is 
between end effector position and joints. The number of 
positional degrees of freedom (DOF) of the end effector is 3 
(not taking pose into account), i.e., the end effector can move 
in 3D space. Nevertheless, the number of joints in the arm 
are always more than 3, indicating the fact that for the same 
end effector position, there exist many limb joint 
configuration possibilities. On the other hand, Type II 
redundancy, is between joint torque and muscle force. There 
is a greater number of muscles than that required to generate 
movement.  

Regarding previous work, the Type I redundancy 
problem has been studied for more than fifty years. 
Considering different optimization criteria or restricted 
conditions, many methods have been proposed. Yoshikawa 
proposed a manipulatability measure, through minimization 
of which, the arm is kept away from singularities [5]. 
Maciejewski et al. used null-space vectors to aid obstacle 
avoidance [6]. On the other hand, for the Type II redundancy 
problem, there exists literature on building bionic robots that 
attempt to follow the movement principles of human. For 
example, Klug et al. developed a 3 DOF bionic robot arm 
which is controlled by a PD controller with feed-forward 
compensation [2]. The trajectory of the arm is optimized and 
adjusted for a time and energy-optimal motion [7]. Potkonjak 
et al. built a humanoid robot with antagonistic drives whose 
controller is designed by H∞

 loop shaping [3]. Tahara 

proposed a simple sensor-motor control scheme as internal 
force and simulated the overall stability [4]. 

Now, having discussed the issue of Redundancy, let us 
move on to the second issue: Adaptivity. Online parameter 
adaptivity has also been researched for a while in the 
robotics field. Many methods have been proposed, such as 
robust control, adaptive feedback control, neurofuzzy 
adaptive control, etc. However, these approaches have not 
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been applied towards the control of humanoid robot arms 
with biarticular muscles. 

In this paper, we have chosen to utilize sliding control, in 
order to first derive joint torques, and then to distribute the 
joint torques to muscle forces. Specifically, the muscle forces 
were computed by utilizing a Jacobian matrix between joint 
torque space and muscle force space. Furthermore, we used 
internal forces to optimize the computed muscle forces. The 
optimization not only allowed us to keep the muscle forces 
within their predefined force boundary; but also enables the 
individual muscles to be mainly operating in the middle of 
their working range, which we consider to be an anti-fatigue 
state. Besides, all the dynamic parameters of the model are 
updated online. In comparison with previous work on 
parameter adaptation, we propose a method that uses 
prediction error to accelerate the convergence speed of 
parameters. The proposed method was tested for reaching 
movements. The results illustrate the benefits and 
effectiveness of the method. 

II. METHOD 

A. Arm Model 

We built a 2-dimensional model of the arm in the 
horizontal plane (no gravity) based on the upper limb of a 
digital human. The model includes six muscles (shown as 1 
to 6) and two degrees of freedom (shoulder flexion-extension 
and elbow flexion-extension). The range of the shoulder 
angle is from -20 to 100 degrees, and the range of the elbow 
is from 0 to 170 degrees. Four of the muscles are mono-
articular, and two are bi-articular where 1 and 2 cross the 
shoulder joint; 3 and 4 cross the elbow joint; 5 and 6 cross 
both joints (Fig. 1). 

 

 

Figure 1.  Humanoid robot arm model. 

Considering the arm (including upper arm and lower arm) 
as a planar, two-link, articulated rigid object, the position of 
hand can be derived by a 2-vector q  of two angles. The 

input is a 6-vector Fm
 of muscle forces. The dynamics of the 

rigid object is strongly nonlinear. Using the Lagrangian 
equations in classical dynamics, we get the dynamic 
equations of the ideal upper limb model 
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or abbreviated as 

 
 
H t( ) &&q +C t( ) &q +G t( ) = τ  (2) 

with q = q1 q2






T

= θ1 θ2






T

  being the two joint 

angles. τ = τ1 τ 2






T

= f Fm( )  is joint torque which is a 

function of muscle force Fm
  

 Fm = Fm,1 Fm,2 Fm,3 Fm,4 Fm ,5 Fm,6






T

 (3) 

H q,t( )  is an inertia matrix containing information with 

regard to the instantaneous mass distribution. 
 
C q, &q,t( )  is 

centripetal and coriolis torques representing the moments of 

centrifugal forces. G q,t( )  represents gravitational torques 

changing with the posture configuration of the arm. 

 

 

H11 = J1 + J2 + m2d1

2 + 2m2d1c2 cos q2( )

H12 = H 21 = J2 + m2d1c2 cos q2( )
H22 =J2

C11 = −2m2d1c2 sin q2( ) &q2

C12 = −m2d1c2 sin q2( ) &q2

C21 = m2d1c2 sin q2( ) &q1

C22 =0

G1 = g m1c1 + m2d1( )cos q1( ) + gm2c2 cos q1 + q2( )

G2 = gm2c2 cos q1 + q2( )

 (4) 

where g  is the acceleration of gravity. ci  is the distance 

from the center of a joint i  to the center of the gravity point 

of link i . di
 is the length of link i . Ji = midi

2 + I i  where I i  is 

the moment of inertia about axis through the center of mass 

of link i . mi  is the mass of link i .n 

B. Arm Model with Estimated Parameter 

In our model, we assume that the arm model of Eq. (1) 

might be influenced by disturbances and perturbations from 

the environment. Hence, we use an estimated arm model to 

control, which is written as 
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Ĉ21 t( ) Ĉ22 t( )
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and which can also be abbreviated as 

 
 
Ĥ t( ) &&q + Ĉ t( ) &q + Ĝ t( ) = τ̂  (6) 

where ⋅̂  means estimated value of ⋅( ) . The connection 

between the ideal model (Eq.(1)) and estimated model (Eq. 

(5)) comes through the choice of τ = τ̂ . Below, we use the 

estimated model (5) to generate torques for the control of the 
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real system. In addition, the parameter adaptation updates the 

estimated parameters Ĥ , Ĉ  and Ĝ  in real time. 

For convenience during the following derivation, we 
define the actual and estimated arm parameter vector 

 P = PH

T PC
T PG

T





T

, P̂ = P̂H

T P̂C
T P̂G

T





T

 (7) 
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thus the estimation error vector can be defined as 

 
 

%P = P̂ − P = %PH

T %PC
T %PG

T





T

 (9) 

C. Joint Torque Computation 

Sliding control is used to control the posture of the arm 
[8]. A 2-vector qd

 is the desired states. Define a sliding term 

s  as 

 
 
s = %&q + Λ %q = ( &q − &qd ) + Λ(q − qd )  (10) 

where Λ  is a positive diagonal matrix. Defining the 

reference velocity 
 
&qr

 and reference acceleration 
 
&&qr

 as 

 

 

&qr = &q − s

&&qr = &&q − &s
 (11) 

we then choose the control method as 

 
 
τ = Ĥ (q)&&qr + Ĉ(q, &q) &qr + Ĝ − Ksgn(s)  (12) 

where K  is a diagonal matrix and sgn ⋅( )  is sign function. 

For the proof of sliding control we refer to [9]. 

D. Arm Parameter Adaptation 

To accelerate the parameter update speed, we use two 
error sources to update estimated parameters. The first 
source is tracking error. We chose the parameter adaptation 
method based on tracking error as 

 
 

&̂
Ptra = −Γ−1

s1
&&qr

T s2
&&qr

T s1
&qr

T s2
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T s1 s2






T

 (13) 

where Γ  is a diagonal matrix. The proof of this parameter 

adaptation method is in [10]. On the other side, the dynamic 

equation (Eq.(1)) can be written in the form 
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In this equation, τ  is the “output” of the system. S  is a 

signal matrix. P  is a vector of real parameters. We can 

predict the value of the output τ  based on the parameter 

estimation, i.e. 

 τ̂ = SP̂  (15) 

Then the prediction error e  can be defined as 

 
 
e = τ̂ −τ = SP̂ − SP = S %P  (16) 

According to it, we can get the parameter adaptation method 

based on prediction error, i.e. 

 

 

&̂
Ppre = −Ξ

∂ eTe( )
∂P̂

= −Ξ
∂ SP̂ − SP( )

T

SP̂ − SP( )( )
∂P̂

= −2ΞST
SP̂ − SP( ) = −2ΞST

e = −2ΞST τ̂ − τ( )

 (17) 

where Ξ  is a diagonal coefficient matrix. If we assume that 

the parameters change much slower as compared to the 

parameter identification, from Eq. (17), we can get 

  
%&P =

&̂
P − &P = −2ΞSTS %P  (18) 

Here we choose a Lyapunov function candidate 

 
 

V t( ) =
1

4
%PT %P  (19) 

then the derivative of V t( )  is 

 
 

&V t( ) =
1

2
%PT %&P =

1

2
%PT −2ΞSTS %P( ) = −Ξ S %P( )

T

S %P( ) ≤ 0  (20) 

which means the parameter estimation converges to real 

values. Therefore, according to Eq. (13) and Eq. (17), the 

overall adaptation law is 

 

 

&̂
P =

&̂
Ptra +

&̂
Ppre

= −Γ−1
s1
&&qr

T s2
&&qr

T s1
&qr

T s2
&qr

T s1 s2






T

−2ΞST τ̂ − τ( )

 (21) 

E. Jacobian Matrix between Muslce and Joint Space 

The coordinate system of the robot arm is shown in Fig. 

2 where we define aij 1 ≤ i ≤ 6,1 ≤ j ≤ 2( )  as the distance 

between the muscle endpoint and center of its adjacent joint. 

Define lk 1 ≤ k ≤ 6( )  as the k -th muscle length. 

 

Figure 2.  Humanoid robot arm model. 

According to the Sine Law and the Cosine Law, we can 

get 
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l1
2 = a11

2 + a12

2 − 2a11a12 cos π −θ1( )

l2
2 = a21

2 + a22

2 − 2a21a22 cos θ1( )

l
3

2 = a
31

2 + a
32

2 − 2a
31
a

32
cos π −θ

2( )

l4
2 = a41

2 + a42

2 − 2a41a42 cos θ2( )

 (22) 

We constructed a right triangle to calculate l5  and l6  

 

l5
2 = a51 + a01( )

2
+ a52 + a02( )

2
− 2 a51 + a01( ) a52 + a02( )cos π −θ1 −θ2( )

l5
2 = a01 − a61( )

2
+ a02 − a62( )

2
− 2 a01 − a61( ) a02 − a62( )cos π −θ1 −θ2( )

 

 (23) 

where a01
 and a02

 can be obtained by the Sine Law 

 a01 =
d1 sin θ2( )

sin θ1 +θ2( )
, a02 =

d1 sin θ1( )
sin θ1 +θ2( )

 (24) 

After simplification, we finally get 

 

l1 = a11

2 + a12

2 + 2a11a12 cos θ1( )( )
1/2

l2 = a21

2 + a22

2 − 2a21a22 cos θ1( )( )
1/2

l3 = a31

2 + a32

2 + 2a31a32 cos θ2( )( )
1/2

l4 = a41

2 + a42

2 − 2a41a42 cos θ2( )( )
1/2

l5 =
a51 + a01( )

2
+ a52 + a02( )

2

+2 a51 + a01( ) a52 + a02( )cos θ1 +θ2( )













1/2

l6 =
a01 − a61( )

2
+ a02 − a62( )

2

+2 a01 − a61( ) a02 − a62( )cos θ1 +θ2( )













1/2

  

(25) 

Assuming the kinematics between muscle length and joint 

angle is given by 

 L = Q Θ( )  (26) 

where 

 
L = l1 l2 l3 l4 l5 l6





T

Θ = θ1 θ2






T
 (27) 

then the derivative of Eq. (26) is 

 

 
 
&L = Jm

&Θ  (28) 

where Jm
is a Jacobian matrix between the joint space and 

the muscle space. It has a format as 

 Jm =

Jm,1,1 Jm ,1,2

Jm ,2,1 Jm,2,2

Jm,3,1 Jm,3,2

Jm,4,1 Jm,4,2

Jm ,5,1 Jm,5,2

Jm ,6,1 Jm,6,2





























 (29) 

where 

 

Jm,1,1 =
−a11a12 sin θ1( )

a11

2 + 2cos θ1( )a11a12 + a12

2

Jm,2,1 =
−a21a22 sin θ1( )

a21

2 + 2 cos θ1( )a21a22 + a22

2

Jm,3,2 =
−a31a32 sin θ2( )

a31

2 + 2cos θ2( )a31a32 + a32

2

Jm,4,2 =
a41a42 sin θ2( )

a41

2 + 2cos θ2( )a41a42 + a42

2

Jm,1,2 = Jm,2,2 = Jm ,3,1 = Jm ,4,1 = 0

 (30) 

Jm ,5,1
, Jm ,5,2

, Jm ,6,1
 and Jm ,6,2

 are long equations and we do 

not provide them here. The derivation of the above Jacobian 
matrix can be done by Matlab Symbolic Toolbox. The 
program for this derivation is shown in Appendix. 

F. Muscle Force Distribution 

Hence, the relationship between muscle forces and joint 

torques can be derived by the principle of virtual work as 

 τ = f Fm( ) = Jm

TFm  (31) 

Hence, the inverse relation between the joint torques and the 

muscle forces can be expressed as 

 τ inv = f −1 τ( ) = Jm

T( )
+

τ  (32) 

where 

 Jm

T( )
+

= Jm Jm

T Jm( )
−1

 (33) 

is pseudo-inverse matrix of Jm

T . The above muscle force 

distribution solution satisfies 

 min Fm s.t. Jm

TFm = τ  (34) 

which means the pseudoinverse is an optimization solution 

to obtain minimum muscle distribution force. However, the 

above solution does not consider physical constraints, such 

as the fact that the maximum output force of muscles is 

limited, that muscles can only contract, etc. To involve these 

constraints, we define Fin  as a voluntary vector having the 

same dimension with Fm
 which expresses the internal forces 

generated by redundant muscles. Then we can define the 

internal force in Fm
 space, i.e. 

 g Fin( ) = I − Jm

T( )
+

Jm

T( )Fin  (35) 

where I  is an identity matrix having the same dimension 

with muscle space. According to Moore-Penrose 

pseudoinverse, g Fin( ) is orthogonal with the pseudo-inverse 

solution. Thus, we can choose any vector as Fin . Below, we 

give a gradient direction for Fin  to make Fm
 satisfies 

boundary constraints. 

Here, we assume that each muscle force is limited in the 

interval from Fm,i,min
 to Fm,i,max

 for 1 ≤ i ≤ 6 . Our objective is 

to choose a gradient direction to make each element of 

Fm,i 1 ≤ i ≤ 6( )  equal or greater than Fm,i,min
, and equal or less 

than Fm,i,max
. Considering muscle fatigue, one reasonable 

way to achieve minimal fatigue is to make each output force 

of the muscles to be around at the middle magnitude 

between Fm,i,min
 and Fm,i,max

. The physical meaning of this 
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method is to distribute load to all muscles into their proper 

load interval, so that they can continue working for a longer 

time. Based on these considerations, we choose a function 

h  as 

 h Fm( ) =
τ inv,i − Fm,i,mid

Fm,i,mid − Fm ,i,max











2

j=1

6

∑  (36) 

where 

 

 

0 ≤ Fm,i,min ≤ τ inv,i ≤ Fm,i ,max

Fm ,i,mid =
Fm ,i,min + Fm ,i,max

2

i = 1,2,L6

 (37) 

then we chose Fin  as the gradient of the function h , i.e. 

 Fin = K in

∂h τ inv( )
∂τ inv

= K in∇h = K in ⋅

2 ⋅
τ inv,1 − Fm ,1,mid

Fm,1,mid − Fm,1,max

2 ⋅
τ inv,2 − Fm ,2,mid

Fm ,2,mid − Fm,2,max

2 ⋅
τ inv,3 − Fm ,3,mid

Fm,3,mid − Fm,3,max

2 ⋅
τ inv,4 − Fm ,4,mid

Fm,4,mid − Fm,4,max

2 ⋅
τ inv,5 − Fm ,5,mid

Fm ,5,mid − Fm,5,max

2 ⋅
τ inv,6 − Fm ,6,mid

Fm ,6,mid − Fm,6,max















































 (38) 

where Kin
 is a scalar matrix. It is very easy to prove that the 

direction of Fin  points to Fm,i ,mid
. According to the 

computation in Eq. (32) and Eq. (38), the muscle force is 

calculated as 

 Fm = τ inv + g Fin( )  (39) 

III. RESULTS 

The performance of the proposed muscle force control 
method was tested though a simulation of reaching 
movements. The desired movement is bending the upper arm 
and lower arm from 0 rad to π / 2  rad and then stretching 

them back to 0 rad. The total simulation time is 10s. 

A. Arm Model Parameter Setting 

The parameters of the robot arm are based on the real 
data of a human upper limb. The setting of length, mass, 
mass center position and inertia coefficients are shown in 
Table 1. The anthropological data comes from [11]. Without 
loss of generality, the muscle configuration coefficients (in 

Eq. (25)) are set as aij = 0.1m 1 ≤ i ≤ 6,1 ≤ j ≤ 2( ). 

TABLE I.  ANTHROPOLOGICAL PARAMETER VALUE 

Segment Upper arm Lower arm 

Length (m) 0.282 0.269 

Mass (kg) 1.980 1.180 

MCS Pos (m) 0.163 0.123 

I11
 (kg.m2) 0.013 0.007 

I22
 (kg.m2) 0.004 0.001 

I33
 (kg.m2) 0.011 0.006 

MCS Pos means position of the mass center. 

B. Computational Coefficient Setting 

There are three groups of parameters that need to be set: 
the parameters for sliding control, the parameters for 
parameter adaptation, and the parameters for muscle force 
computation. These parameters are set as follows.  

The control parameters are set by (Eq. (12)) as 

 K = 20 ⋅Diag 1 1 ( )  (40) 

the adaptation parameters (Eq. (21)) are set as 

 
Γ−1 = 0.0015 ⋅Diag 1 1 1 1 1 1 1 1 1 1 ( )
2Ξ = 0.001 ⋅Diag 1 1 1 1 1 1 1 1 1 1 ( )

 (41) 

and the muscle force computation parameters (Eq. (38)) are 

set as 

 
K in = 200 ⋅Diag 1 3 1 1 1 2 ( )

Fm,i,min = 0, Fm,i,max = 1000 1 ≤ i ≤ 6( )
 (42) 

where Diag ⋅( )  is a diagonal matrix with diagonal elements 

being as ⋅( ) . 

C. Control Performance 

According to the bend-stretch movement, two sinusoidal 
waves are set as reference signals for q1

 and q2
. The 

frequency of the two waves is set as 2π . Initial states of q1
 

and q2
 are set as zero. Based on the joint torque coming 

from sliding control, we computed 6 muscle forces as shown 
in Fig. 3. All the muscle forces are in the range of 

Fm,i,min ,Fm,i,max   for 1 ≤ i ≤ 6( ) . These muscle forces are 

optimized to be around Fm,i ,mid
. 

 

Figure 3.  Muscle force. 

These computed muscle forces are used to control the 
humanoid robot arm model. The shoulder angle and elbow 
angle are shown in Fig. 4 (a) and (b), respectively. Compared 
with the desired trajectory, the tracking error of the shoulder 
joint and elbow joint are shown in Fig. 4 (c) and (d), 
respectively. It is clear the tracking performance is good. 
Additionally, both the two tracking errors decrease gradually. 
The reason is that the parameter update makes the estimated 
model parameters to approach the real ones gradually. 
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(a) 

(b) 

(c) 

(d) 

Figure 4.  Arm control performance. (a) Shoulder angle. (b) Elbow angle. 

(c) Tracking error of the shoulder joint. (d) Tracking error of the elbow 

joint. 

D. Parameter Adaptation 

In order to test the functionality of the designed 
parameter adaptation method, we set the initial estimated 

model parameters Ĥ , Ĉ  and Ĝ  to correspond to a zero 
matrix (or zero vector) at the beginning. After that, the 
parameter adaptation method adjusts the parameters based on 
the tracking error and the prediction error. Fig. 5 shows the 

parameters H , Ĥ  and C , Ĉ  in the time interval 0,1[ ] s. We 

took four snapshots of these parameters at the moment 0s, 
1/3s, 2/3s, 1s, respectively. It is noted that, the estimated 
parameters do not coincide with real parameters. That is 
because the dynamic features of the model have been only 
partially explored through our simulated movement. The 
more complicated the movement that is chosen is, it is 
expected that the more consistency between the estimated 
parameters and the real parameters is exhibited. 

 
(a) 

 
(b) 

Figure 5.  Arm parameter update. (a) Snapshots of H and Ĥ . (b) 

Snapshots of C  and Ĉ . 

E. Animation 

A humanoid arm was visualized by utilizing Simulink 
(SimMechanics Toolbox). The arm model consists of three 
parts: torso, right numerus, and right ulna radius hand. The 
three parts are created by 12 bones, 2 bones, and 58 bones, 
respectively. The polygon files of these bones come from 
SIMM. To make Simulink be able to import these polygons, 
we converted the format of the polygon files from .vtp files 
to .stl files. Fig. 6 shows three phases (i.e., start phase, 
middle phase, and end phase) of the arm gesture change, 
during one bend-stretch movement circle. 
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(a) 

   
(b) 

   
(c) 

Figure 6.  Arm movement snapshots. (a) Start phase. (b) Middle phase. (c) 

End phase. 

IV. CONCLUSION 

In this paper, after discussing the benefits of muscle-like 
systems for robots arms as compared to traditional one-
motor-per-joint approaches, we proposed an adaptive 
biarticular muscle force control method, which exhibits a 
number of beneficial properties. Through our method, the 
derived muscle forces stay within prefixed bounds. 
Additionally, muscle forces are optimized to be in the middle 
of their output force range, corresponding to minimal fatigue. 
Our proposed method is not only easily expandable to other 
configurations, but it can also be combined with many other 
methods that output joint torque. Therefore, this paper 
provides a flexible solution for controlling a muscle-like-
driven system. Furthermore, our muscle force distribution 
method provides a general solution for redundancy problem, 
and has proven its effectiveness and benefits through our 
derived simulation results. 
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APPENDIX 

MATLAB CODE FOR DERIVING THE JACOBIAN MATRIX 

% Usage: need Matlab Symbolic Toolbox 

syms a11 a12 a21 a22 a31 a32 a41 a42 a51 a52 a61 a62 
syms d1 l1 l2 l3 l4 l5 l6 theta1 theta2 

l1=sqrt(a11^2+a12^2+2*a11*a12*cos(theta1)); 

l2=sqrt(a21^2+a22^2-2*a21*a22*cos(theta1)); 
l3=sqrt(a31^2+a32^2+2*a31*a32*cos(theta2)); 

l4=sqrt(a41^2+a42^2-2*a41*a42*cos(theta2)); 

l5=sqrt((a51+d1*sin(theta2)/sin(theta1+theta2))^2+(a52+d1*sin(theta1)… 
/sin(theta1+theta2))^2+2*(a51+d1*sin(theta2)/sin(theta1+theta2))… 

*(a52+d1*sin(theta1)/sin(theta1+theta2))*cos(theta1+theta2)); 

l6=sqrt((d1*sin(theta2)/sin(theta1+theta2)-a61)^2+(d1*sin(theta1)/… 
sin(theta1+theta2)-a62)^2+2*(d1*sin(theta2)/sin(theta1+theta2)-a61)… 

*(d1*sin(theta1)/sin(theta1+theta2)-a62)*cos(theta1+theta2)); 
% Jm is the Jacobian matrix 

Jm=jacobian([l1; l2; l3; l4; l5; l6], [theta1 theta2]); 
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