
Adaptive Biarticular Muscle Force Control for

Humanoid Robot Arms

Haiwei Dong and Nikolaos Mavridis

Department of Computer Engineering, New York University Abu Dhabi

Abu Dhabi, United Arab Emirates

{haiwei.dong; nikolaos.mavridis}@nyu.edu

Abstract—This paper presents an efficient method for adaptive

control of humanoid robot arms with biarticular muscles,

which exhibits multiple beneficial properties. In our approach,

sliding control was chosen to get joint torque first and then the

joint torque was distributed to muscle forces. The muscle force

was computed based on a Jacobian matrix between joint

torque space and muscle force space. In addition, internal

forces were used to optimize the computed muscle forces – and

thus, two important benefits arise: through our proposed

method, not only we are making sure that each muscle force

stays within its predefined force boundary; but we are also

enabling the muscles to work in the middle of their working

range, which is considered to be an anti-fatigue state. Yet more

benefit derived, comes from the fact that in our method all the

dynamic parameters are updated in real-time, and can thus

one can account for perturbations and disturbances during

operation. Compared with previous work in parameter

adaptation, a composite method was proposed which utilizes

the prediction error to accelerate parameter convergence

speed. Our method was tested for the case of reaching motions.

The results clearly illustrate the benefits of the method.

Keywords-muscle cooperation; redundancy; internal force

I. INTRODUCTION

Traditionally robot arms are driven by motors, and
usually, each motor drives a specific joint, and corresponds
with an independent degree of freedom (DOF). Such a
driven system has two main problems: First, if a motor is
broken, the DOF corresponding to this motor will be
completely lost. Second, the motors near the base link need
to carry more load and thus need more power, leading it to
the need for very heavy base motors. In contrast, when one
compares the above state of affairs of traditional robot arms
with the human movement system, one can see that there
exist many advantages for the latter: First, as there are many
muscles driving one joint, the total joint torque is distributed
to every muscle. Thus, each muscle only has a relatively
small load. Second, if one muscle is broken, the motion
capability of the corresponding joint is not totally lost. As a
result of the above observations, mimicking such aspects of
the human body seems to be a promising research direction.
Recently, there has been quite some work focusing on bionic
arms [1-4]. In our paper, we propose a muscle control
method for humanoid robot arms driven by biariticular
muscles, which can also be easily extended to more

complicated configurations. Our control method is designed
to be adaptive, i.e. robust to the perturbation and
disturbances from environment. In addition, the muscle
forces that are produced have to satisfy preset boundary
force limits. Finally, the method has to be efficient enough
for practical application.

Towards our endeavor, we had to face two main issues,
namely Redundancy and Adaptivity. Let us start we the first:
There exist two types of redundancies. Type I redundancy is
between end effector position and joints. The number of
positional degrees of freedom (DOF) of the end effector is 3
(not taking pose into account), i.e., the end effector can move
in 3D space. Nevertheless, the number of joints in the arm
are always more than 3, indicating the fact that for the same
end effector position, there exist many limb joint
configuration possibilities. On the other hand, Type II
redundancy, is between joint torque and muscle force. There
is a greater number of muscles than that required to generate
movement.

Regarding previous work, the Type I redundancy
problem has been studied for more than fifty years.
Considering different optimization criteria or restricted
conditions, many methods have been proposed. Yoshikawa
proposed a manipulatability measure, through minimization
of which, the arm is kept away from singularities [5].
Maciejewski et al. used null-space vectors to aid obstacle
avoidance [6]. On the other hand, for the Type II redundancy
problem, there exists literature on building bionic robots that
attempt to follow the movement principles of human. For
example, Klug et al. developed a 3 DOF bionic robot arm
which is controlled by a PD controller with feed-forward
compensation [2]. The trajectory of the arm is optimized and
adjusted for a time and energy-optimal motion [7]. Potkonjak
et al. built a humanoid robot with antagonistic drives whose
controller is designed by H∞

 loop shaping [3]. Tahara

proposed a simple sensor-motor control scheme as internal
force and simulated the overall stability [4].

Now, having discussed the issue of Redundancy, let us
move on to the second issue: Adaptivity. Online parameter
adaptivity has also been researched for a while in the
robotics field. Many methods have been proposed, such as
robust control, adaptive feedback control, neurofuzzy
adaptive control, etc. However, these approaches have not

2012 12th IEEE-RAS International Conference on Humanoid Robots
Nov.29-Dec.1, 2012. Business Innovation Center Osaka, Japan

978-1-4673-1369-8/12/$31.00 ©2012 IEEE 284

been applied towards the control of humanoid robot arms
with biarticular muscles.

In this paper, we have chosen to utilize sliding control, in
order to first derive joint torques, and then to distribute the
joint torques to muscle forces. Specifically, the muscle forces
were computed by utilizing a Jacobian matrix between joint
torque space and muscle force space. Furthermore, we used
internal forces to optimize the computed muscle forces. The
optimization not only allowed us to keep the muscle forces
within their predefined force boundary; but also enables the
individual muscles to be mainly operating in the middle of
their working range, which we consider to be an anti-fatigue
state. Besides, all the dynamic parameters of the model are
updated online. In comparison with previous work on
parameter adaptation, we propose a method that uses
prediction error to accelerate the convergence speed of
parameters. The proposed method was tested for reaching
movements. The results illustrate the benefits and
effectiveness of the method.

II. METHOD

A. Arm Model

We built a 2-dimensional model of the arm in the
horizontal plane (no gravity) based on the upper limb of a
digital human. The model includes six muscles (shown as 1
to 6) and two degrees of freedom (shoulder flexion-extension
and elbow flexion-extension). The range of the shoulder
angle is from -20 to 100 degrees, and the range of the elbow
is from 0 to 170 degrees. Four of the muscles are mono-
articular, and two are bi-articular where 1 and 2 cross the
shoulder joint; 3 and 4 cross the elbow joint; 5 and 6 cross
both joints (Fig. 1).

Figure 1. Humanoid robot arm model.

Considering the arm (including upper arm and lower arm)
as a planar, two-link, articulated rigid object, the position of
hand can be derived by a 2-vector q of two angles. The

input is a 6-vector Fm
 of muscle forces. The dynamics of the

rigid object is strongly nonlinear. Using the Lagrangian
equations in classical dynamics, we get the dynamic
equations of the ideal upper limb model

H11 t() H12 t()

H 21 t() H 22 t()

&&q1

&&q2

+
C11 t() C12 t()

C21 t() C22 t()

&q1

&q2

+
G1 t()

G2 t()

=
τ1 t()

τ 2 t()

 (1)

or abbreviated as

H t() &&q +C t() &q +G t() = τ (2)

with q = q1 q2

T

= θ1 θ2

T

 being the two joint

angles. τ = τ1 τ 2

T

= f Fm() is joint torque which is a

function of muscle force Fm

 Fm = Fm,1 Fm,2 Fm,3 Fm,4 Fm ,5 Fm,6

T

 (3)

H q,t() is an inertia matrix containing information with

regard to the instantaneous mass distribution.

C q, &q,t() is

centripetal and coriolis torques representing the moments of

centrifugal forces. G q,t() represents gravitational torques

changing with the posture configuration of the arm.

H11 = J1 + J2 + m2d1

2 + 2m2d1c2 cos q2()

H12 = H 21 = J2 + m2d1c2 cos q2()
H22 =J2

C11 = −2m2d1c2 sin q2() &q2

C12 = −m2d1c2 sin q2() &q2

C21 = m2d1c2 sin q2() &q1

C22 =0

G1 = g m1c1 + m2d1()cos q1() + gm2c2 cos q1 + q2()

G2 = gm2c2 cos q1 + q2()

 (4)

where g is the acceleration of gravity. ci is the distance

from the center of a joint i to the center of the gravity point

of link i . di
 is the length of link i . Ji = midi

2 + I i where I i is

the moment of inertia about axis through the center of mass

of link i . mi is the mass of link i .n

B. Arm Model with Estimated Parameter

In our model, we assume that the arm model of Eq. (1)

might be influenced by disturbances and perturbations from

the environment. Hence, we use an estimated arm model to

control, which is written as

Ĥ11 t() Ĥ12 t()

Ĥ 21 t() Ĥ 22 t()

&&q1

&&q2

+
Ĉ11 t() Ĉ12 t()

Ĉ21 t() Ĉ22 t()

&q1

&q2

+
Ĝ1 t()

Ĝ2 t()

=
τ̂1 t()

τ̂ 2 t()

 (5)

and which can also be abbreviated as

Ĥ t() &&q + Ĉ t() &q + Ĝ t() = τ̂ (6)

where ⋅̂ means estimated value of ⋅() . The connection

between the ideal model (Eq.(1)) and estimated model (Eq.

(5)) comes through the choice of τ = τ̂ . Below, we use the

estimated model (5) to generate torques for the control of the

285

real system. In addition, the parameter adaptation updates the

estimated parameters Ĥ , Ĉ and Ĝ in real time.

For convenience during the following derivation, we
define the actual and estimated arm parameter vector

 P = PH

T PC
T PG

T

T

, P̂ = P̂H

T P̂C
T P̂G

T

T

 (7)

where

PH =

H11

H12

H 21

H 22

, PC =

C11

C12

C21

C22

, PG =
G1

G2

P̂H =

Ĥ11

Ĥ12

Ĥ 21

Ĥ 22

, PC =

Ĉ11

Ĉ12

Ĉ21

Ĉ22

, PG =
Ĝ1

Ĝ2

 (8)

thus the estimation error vector can be defined as

%P = P̂ − P = %PH

T %PC
T %PG

T

T

 (9)

C. Joint Torque Computation

Sliding control is used to control the posture of the arm
[8]. A 2-vector qd

 is the desired states. Define a sliding term

s as

s = %&q + Λ %q = (&q − &qd) + Λ(q − qd) (10)

where Λ is a positive diagonal matrix. Defining the

reference velocity

&qr

 and reference acceleration

&&qr

 as

&qr = &q − s

&&qr = &&q − &s
 (11)

we then choose the control method as

τ = Ĥ (q)&&qr + Ĉ(q, &q) &qr + Ĝ − Ksgn(s) (12)

where K is a diagonal matrix and sgn ⋅() is sign function.

For the proof of sliding control we refer to [9].

D. Arm Parameter Adaptation

To accelerate the parameter update speed, we use two
error sources to update estimated parameters. The first
source is tracking error. We chose the parameter adaptation
method based on tracking error as

&̂
Ptra = −Γ−1

s1
&&qr

T s2
&&qr

T s1
&qr

T s2
&qr

T s1 s2

T

 (13)

where Γ is a diagonal matrix. The proof of this parameter

adaptation method is in [10]. On the other side, the dynamic

equation (Eq.(1)) can be written in the form

τ = S &&q, &q,q()P

=
&&q1 0 &&q1 0 &q1 0 &q1 0 1 0

0 &&q2 0 &&q2 0 &q2 0 &q2 0 1

PH

PC

PG

 (14)

In this equation, τ is the “output” of the system. S is a

signal matrix. P is a vector of real parameters. We can

predict the value of the output τ based on the parameter

estimation, i.e.

 τ̂ = SP̂ (15)

Then the prediction error e can be defined as

e = τ̂ −τ = SP̂ − SP = S %P (16)

According to it, we can get the parameter adaptation method

based on prediction error, i.e.

&̂
Ppre = −Ξ

∂ eTe()
∂P̂

= −Ξ
∂ SP̂ − SP()

T

SP̂ − SP()()
∂P̂

= −2ΞST
SP̂ − SP() = −2ΞST

e = −2ΞST τ̂ − τ()

 (17)

where Ξ is a diagonal coefficient matrix. If we assume that

the parameters change much slower as compared to the

parameter identification, from Eq. (17), we can get

%&P =

&̂
P − &P = −2ΞSTS %P (18)

Here we choose a Lyapunov function candidate

V t() =
1

4
%PT %P (19)

then the derivative of V t() is

&V t() =
1

2
%PT %&P =

1

2
%PT −2ΞSTS %P() = −Ξ S %P()

T

S %P() ≤ 0 (20)

which means the parameter estimation converges to real

values. Therefore, according to Eq. (13) and Eq. (17), the

overall adaptation law is

&̂
P =

&̂
Ptra +

&̂
Ppre

= −Γ−1
s1
&&qr

T s2
&&qr

T s1
&qr

T s2
&qr

T s1 s2

T

−2ΞST τ̂ − τ()

 (21)

E. Jacobian Matrix between Muslce and Joint Space

The coordinate system of the robot arm is shown in Fig.

2 where we define aij 1 ≤ i ≤ 6,1 ≤ j ≤ 2() as the distance

between the muscle endpoint and center of its adjacent joint.

Define lk 1 ≤ k ≤ 6() as the k -th muscle length.

Figure 2. Humanoid robot arm model.

According to the Sine Law and the Cosine Law, we can

get

286

l1
2 = a11

2 + a12

2 − 2a11a12 cos π −θ1()

l2
2 = a21

2 + a22

2 − 2a21a22 cos θ1()

l
3

2 = a
31

2 + a
32

2 − 2a
31
a

32
cos π −θ

2()

l4
2 = a41

2 + a42

2 − 2a41a42 cos θ2()

 (22)

We constructed a right triangle to calculate l5 and l6

l5
2 = a51 + a01()

2
+ a52 + a02()

2
− 2 a51 + a01() a52 + a02()cos π −θ1 −θ2()

l5
2 = a01 − a61()

2
+ a02 − a62()

2
− 2 a01 − a61() a02 − a62()cos π −θ1 −θ2()

 (23)

where a01
 and a02

 can be obtained by the Sine Law

 a01 =
d1 sin θ2()

sin θ1 +θ2()
, a02 =

d1 sin θ1()
sin θ1 +θ2()

 (24)

After simplification, we finally get

l1 = a11

2 + a12

2 + 2a11a12 cos θ1()()
1/2

l2 = a21

2 + a22

2 − 2a21a22 cos θ1()()
1/2

l3 = a31

2 + a32

2 + 2a31a32 cos θ2()()
1/2

l4 = a41

2 + a42

2 − 2a41a42 cos θ2()()
1/2

l5 =
a51 + a01()

2
+ a52 + a02()

2

+2 a51 + a01() a52 + a02()cos θ1 +θ2()

1/2

l6 =
a01 − a61()

2
+ a02 − a62()

2

+2 a01 − a61() a02 − a62()cos θ1 +θ2()

1/2

(25)

Assuming the kinematics between muscle length and joint

angle is given by

 L = Q Θ() (26)

where

L = l1 l2 l3 l4 l5 l6

T

Θ = θ1 θ2

T
 (27)

then the derivative of Eq. (26) is

&L = Jm

&Θ (28)

where Jm
is a Jacobian matrix between the joint space and

the muscle space. It has a format as

 Jm =

Jm,1,1 Jm ,1,2

Jm ,2,1 Jm,2,2

Jm,3,1 Jm,3,2

Jm,4,1 Jm,4,2

Jm ,5,1 Jm,5,2

Jm ,6,1 Jm,6,2

 (29)

where

Jm,1,1 =
−a11a12 sin θ1()

a11

2 + 2cos θ1()a11a12 + a12

2

Jm,2,1 =
−a21a22 sin θ1()

a21

2 + 2 cos θ1()a21a22 + a22

2

Jm,3,2 =
−a31a32 sin θ2()

a31

2 + 2cos θ2()a31a32 + a32

2

Jm,4,2 =
a41a42 sin θ2()

a41

2 + 2cos θ2()a41a42 + a42

2

Jm,1,2 = Jm,2,2 = Jm ,3,1 = Jm ,4,1 = 0

 (30)

Jm ,5,1
, Jm ,5,2

, Jm ,6,1
 and Jm ,6,2

 are long equations and we do

not provide them here. The derivation of the above Jacobian
matrix can be done by Matlab Symbolic Toolbox. The
program for this derivation is shown in Appendix.

F. Muscle Force Distribution

Hence, the relationship between muscle forces and joint

torques can be derived by the principle of virtual work as

 τ = f Fm() = Jm

TFm (31)

Hence, the inverse relation between the joint torques and the

muscle forces can be expressed as

 τ inv = f −1 τ() = Jm

T()
+

τ (32)

where

 Jm

T()
+

= Jm Jm

T Jm()
−1

 (33)

is pseudo-inverse matrix of Jm

T . The above muscle force

distribution solution satisfies

 min Fm s.t. Jm

TFm = τ (34)

which means the pseudoinverse is an optimization solution

to obtain minimum muscle distribution force. However, the

above solution does not consider physical constraints, such

as the fact that the maximum output force of muscles is

limited, that muscles can only contract, etc. To involve these

constraints, we define Fin as a voluntary vector having the

same dimension with Fm
 which expresses the internal forces

generated by redundant muscles. Then we can define the

internal force in Fm
 space, i.e.

 g Fin() = I − Jm

T()
+

Jm

T()Fin (35)

where I is an identity matrix having the same dimension

with muscle space. According to Moore-Penrose

pseudoinverse, g Fin() is orthogonal with the pseudo-inverse

solution. Thus, we can choose any vector as Fin . Below, we

give a gradient direction for Fin to make Fm
 satisfies

boundary constraints.

Here, we assume that each muscle force is limited in the

interval from Fm,i,min
 to Fm,i,max

 for 1 ≤ i ≤ 6 . Our objective is

to choose a gradient direction to make each element of

Fm,i 1 ≤ i ≤ 6() equal or greater than Fm,i,min
, and equal or less

than Fm,i,max
. Considering muscle fatigue, one reasonable

way to achieve minimal fatigue is to make each output force

of the muscles to be around at the middle magnitude

between Fm,i,min
 and Fm,i,max

. The physical meaning of this

287

method is to distribute load to all muscles into their proper

load interval, so that they can continue working for a longer

time. Based on these considerations, we choose a function

h as

 h Fm() =
τ inv,i − Fm,i,mid

Fm,i,mid − Fm ,i,max

2

j=1

6

∑ (36)

where

0 ≤ Fm,i,min ≤ τ inv,i ≤ Fm,i ,max

Fm ,i,mid =
Fm ,i,min + Fm ,i,max

2

i = 1,2,L6

 (37)

then we chose Fin as the gradient of the function h , i.e.

 Fin = K in

∂h τ inv()
∂τ inv

= K in∇h = K in ⋅

2 ⋅
τ inv,1 − Fm ,1,mid

Fm,1,mid − Fm,1,max

2 ⋅
τ inv,2 − Fm ,2,mid

Fm ,2,mid − Fm,2,max

2 ⋅
τ inv,3 − Fm ,3,mid

Fm,3,mid − Fm,3,max

2 ⋅
τ inv,4 − Fm ,4,mid

Fm,4,mid − Fm,4,max

2 ⋅
τ inv,5 − Fm ,5,mid

Fm ,5,mid − Fm,5,max

2 ⋅
τ inv,6 − Fm ,6,mid

Fm ,6,mid − Fm,6,max

 (38)

where Kin
 is a scalar matrix. It is very easy to prove that the

direction of Fin points to Fm,i ,mid
. According to the

computation in Eq. (32) and Eq. (38), the muscle force is

calculated as

 Fm = τ inv + g Fin() (39)

III. RESULTS

The performance of the proposed muscle force control
method was tested though a simulation of reaching
movements. The desired movement is bending the upper arm
and lower arm from 0 rad to π / 2 rad and then stretching

them back to 0 rad. The total simulation time is 10s.

A. Arm Model Parameter Setting

The parameters of the robot arm are based on the real
data of a human upper limb. The setting of length, mass,
mass center position and inertia coefficients are shown in
Table 1. The anthropological data comes from [11]. Without
loss of generality, the muscle configuration coefficients (in

Eq. (25)) are set as aij = 0.1m 1 ≤ i ≤ 6,1 ≤ j ≤ 2().

TABLE I. ANTHROPOLOGICAL PARAMETER VALUE

Segment Upper arm Lower arm

Length (m) 0.282 0.269

Mass (kg) 1.980 1.180

MCS Pos (m) 0.163 0.123

I11
 (kg.m2) 0.013 0.007

I22
 (kg.m2) 0.004 0.001

I33
 (kg.m2) 0.011 0.006

MCS Pos means position of the mass center.

B. Computational Coefficient Setting

There are three groups of parameters that need to be set:
the parameters for sliding control, the parameters for
parameter adaptation, and the parameters for muscle force
computation. These parameters are set as follows.

The control parameters are set by (Eq. (12)) as

 K = 20 ⋅Diag 1 1 () (40)

the adaptation parameters (Eq. (21)) are set as

Γ−1 = 0.0015 ⋅Diag 1 1 1 1 1 1 1 1 1 1 ()
2Ξ = 0.001 ⋅Diag 1 1 1 1 1 1 1 1 1 1 ()

 (41)

and the muscle force computation parameters (Eq. (38)) are

set as

K in = 200 ⋅Diag 1 3 1 1 1 2 ()

Fm,i,min = 0, Fm,i,max = 1000 1 ≤ i ≤ 6()
 (42)

where Diag ⋅() is a diagonal matrix with diagonal elements

being as ⋅() .

C. Control Performance

According to the bend-stretch movement, two sinusoidal
waves are set as reference signals for q1

 and q2
. The

frequency of the two waves is set as 2π . Initial states of q1

and q2
 are set as zero. Based on the joint torque coming

from sliding control, we computed 6 muscle forces as shown
in Fig. 3. All the muscle forces are in the range of

Fm,i,min ,Fm,i,max for 1 ≤ i ≤ 6() . These muscle forces are

optimized to be around Fm,i ,mid
.

Figure 3. Muscle force.

These computed muscle forces are used to control the
humanoid robot arm model. The shoulder angle and elbow
angle are shown in Fig. 4 (a) and (b), respectively. Compared
with the desired trajectory, the tracking error of the shoulder
joint and elbow joint are shown in Fig. 4 (c) and (d),
respectively. It is clear the tracking performance is good.
Additionally, both the two tracking errors decrease gradually.
The reason is that the parameter update makes the estimated
model parameters to approach the real ones gradually.

288

(a)

(b)

(c)

(d)

Figure 4. Arm control performance. (a) Shoulder angle. (b) Elbow angle.

(c) Tracking error of the shoulder joint. (d) Tracking error of the elbow

joint.

D. Parameter Adaptation

In order to test the functionality of the designed
parameter adaptation method, we set the initial estimated

model parameters Ĥ , Ĉ and Ĝ to correspond to a zero
matrix (or zero vector) at the beginning. After that, the
parameter adaptation method adjusts the parameters based on
the tracking error and the prediction error. Fig. 5 shows the

parameters H , Ĥ and C , Ĉ in the time interval 0,1[] s. We

took four snapshots of these parameters at the moment 0s,
1/3s, 2/3s, 1s, respectively. It is noted that, the estimated
parameters do not coincide with real parameters. That is
because the dynamic features of the model have been only
partially explored through our simulated movement. The
more complicated the movement that is chosen is, it is
expected that the more consistency between the estimated
parameters and the real parameters is exhibited.

(a)

(b)

Figure 5. Arm parameter update. (a) Snapshots of H and Ĥ . (b)

Snapshots of C and Ĉ .

E. Animation

A humanoid arm was visualized by utilizing Simulink
(SimMechanics Toolbox). The arm model consists of three
parts: torso, right numerus, and right ulna radius hand. The
three parts are created by 12 bones, 2 bones, and 58 bones,
respectively. The polygon files of these bones come from
SIMM. To make Simulink be able to import these polygons,
we converted the format of the polygon files from .vtp files
to .stl files. Fig. 6 shows three phases (i.e., start phase,
middle phase, and end phase) of the arm gesture change,
during one bend-stretch movement circle.

289

(a)

(b)

(c)

Figure 6. Arm movement snapshots. (a) Start phase. (b) Middle phase. (c)

End phase.

IV. CONCLUSION

In this paper, after discussing the benefits of muscle-like
systems for robots arms as compared to traditional one-
motor-per-joint approaches, we proposed an adaptive
biarticular muscle force control method, which exhibits a
number of beneficial properties. Through our method, the
derived muscle forces stay within prefixed bounds.
Additionally, muscle forces are optimized to be in the middle
of their output force range, corresponding to minimal fatigue.
Our proposed method is not only easily expandable to other
configurations, but it can also be combined with many other
methods that output joint torque. Therefore, this paper
provides a flexible solution for controlling a muscle-like-
driven system. Furthermore, our muscle force distribution
method provides a general solution for redundancy problem,
and has proven its effectiveness and benefits through our
derived simulation results.

REFERENCES

[1] S. Oh and Y. Hori, "Development of two-degree-of-freedom control
for robot manipulator with biarticular muscle torques," in American
Control Conference, 2009, pp. 325-330.

[2] S. Klug, B. Mohl, O. V. Stryk, and O. Barth, "Design and application
of a 3 DOF bionic robot arm," in 3rd International Symposium on
Adaptive Motion in Animals and Machines, 2005, pp. 1-6.

[3] V. Potkonjak, K. M. Jovanovic, P. Milosavljevic, N. Bascarevic, and O.
Holland, "The puller-follower control concept in the multi-jointed
robot body with antagonistically coupled compliant drives," in
IASTED International Conference on Robotics, 2011, pp. 375-381.

[4] K. Tahara, Z. Luo, S. Arimoto, and H. Kino, "Sensor-motor control
mechanism for reaching movements of a redundant musculo-skeletal
arm," Journal of Robotic Systems, vol. 22, pp. 639-651, 2005.

[5] T. Yoshikawa, "Analysis and control of robot manipulators with
redundancy," in Robotics Research: The First International
Symposium, ed: MIT Press, 1984, pp. 735-748.

[6] A. A. Maciejewski and C. A. Klein, "Obstacle avoidance for
kinematically redundant manipulators in dynamically varying
environments," International Journal of Robotics Research, vol. 4, pp.
109-117, 1985.

 [7] A. Heim and O. V. Stryk, "Trajectory optimization of industrial robots
with application to computer-aided robotics and robot controllers,"
Optimization, vol. 47, pp. 407-420, 2000.

[8] J. E. Slotine and W. Li, Applied Nonlinar Control: Prentice Hall, 1991.

[9] J. E. Slotine and W. Li, "Adaptive manipulator control: A case study,"
IEEE Transactions on Automatic Control, vol. 33, pp. 995-1003, 1988.

[10] H. Dong, Z. Luo, and A. Nagano, "Adaptive attitude control for
redundant time-varying complex model of human body in the nursing
activity," Journal of Robotics and Mechatronics, vol. 22, pp. 418-429,
2010.

[11] A. Nagano, S. Yoshioka, T. Komura, R. Himeno, and S. Fukashiro, "A
three-dimensional linked segment model of the whole human body,"
International Journal of Sport and Health Science, vol. 3, pp. 311-325,
2005.

APPENDIX

MATLAB CODE FOR DERIVING THE JACOBIAN MATRIX

% Usage: need Matlab Symbolic Toolbox

syms a11 a12 a21 a22 a31 a32 a41 a42 a51 a52 a61 a62
syms d1 l1 l2 l3 l4 l5 l6 theta1 theta2

l1=sqrt(a11^2+a12^2+2*a11*a12*cos(theta1));

l2=sqrt(a21^2+a22^2-2*a21*a22*cos(theta1));
l3=sqrt(a31^2+a32^2+2*a31*a32*cos(theta2));

l4=sqrt(a41^2+a42^2-2*a41*a42*cos(theta2));

l5=sqrt((a51+d1*sin(theta2)/sin(theta1+theta2))^2+(a52+d1*sin(theta1)…
/sin(theta1+theta2))^2+2*(a51+d1*sin(theta2)/sin(theta1+theta2))…

*(a52+d1*sin(theta1)/sin(theta1+theta2))*cos(theta1+theta2));

l6=sqrt((d1*sin(theta2)/sin(theta1+theta2)-a61)^2+(d1*sin(theta1)/…
sin(theta1+theta2)-a62)^2+2*(d1*sin(theta2)/sin(theta1+theta2)-a61)…

*(d1*sin(theta1)/sin(theta1+theta2)-a62)*cos(theta1+theta2));
% Jm is the Jacobian matrix

Jm=jacobian([l1; l2; l3; l4; l5; l6], [theta1 theta2]);

290

