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• We use marker-based multi-camera optical tracking systems to verify kinematic chains of articulated robots.
• The identification of themounted tracking bodies relative to the joints of an articulated robot is essential for an accurate representation of the kinematic
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• We identify the origin of joints relative to tracking bodies by using state-of-the-art center of rotation (CoR) and axes of rotation (AoR) estimation

methods.
• The applicability of our method is proven with two case studies.
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a b s t r a c t

Marker-based multi-camera optical tracking systems are being used in the robotics field to track robots
for validation, verification, and calibration of their kinematic and dynamicmodels. These tracking systems
estimate the pose of tracking bodies attached to objectswithin a tracking volume. In thiswork,we explore
the case of tracking the origins of joints of articulated robots when the tracking bodies are mounted on
limbs or structures relative to the joints. This configuration leads to an unknown relative pose between
the tracking body and the joint origin. The identification of this relative pose is essential for an accurate
representation of the kinematic model. We propose an approach for the identification of the origin of
joints relative to tracking bodies by using state-of-the-art center of rotation (CoR) and axis of rotation
(AoR) estimation methods. The applicability and effectiveness of our approach is demonstrated in two
successful case studies: (i) the verification of the upper body kinematics of DLR’s humanoid Rollin’ Justin
and (ii) the identification of the kinematic parameters of an ST Robot arm relative to its environment for
the embodiment of a situated conversational assistant.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In the ongoing field of robotics research, high-precisionmarker-
based multi-camera optical tracking systems, such as the VICON
Motion Capture System1 or the Infrared Optical Tracking System
from ART Advanced Realtime Tracking GmbH,2 are being used
for validation, verification, and calibration of robotic systems
and applications. The 3-DoF/6-DoF (degree of freedom) pose of
the robot or limb is localized with respect to (w.r.t.) the world

⇤ Corresponding author. Tel.: +971 56 7336784.
E-mail addresses: nbfigueroa@gmail.com, nadia.figueroa@nyu.edu

(N.B. Figueroa), florian.schmidt@dlr.de (F. Schmidt), haider.ali@dlr.de (H. Ali),
nmav@alum.mit.edu (N. Mavridis).
1 VICON Motion Capture System. http://www.vicon.com/index.html.
2 ARTrack tracking system. http://www.ar-tracking.com/home/.

coordinate frame of the tracking systemby placingmarkers or rigid
bodies (sets of markers) on the robotic structures. In the case of
autonomousmobile robots (ground and aerial), researchers use the
positions and orientations of the robots to improve control and
path planning algorithms [1–3]. Regarding articulated robots and
bipeds, the localization of the positions of the limbs or joints is
used to evaluate positioning errors due to lightweight non-rigid
structures, as well as the validation, verification, and simulation of
the dynamic and kinematic models for motion control [4,5].

The method used for identifying the pose of markers or rigid
bodies mounted on a robot – relative to their joints or center of
motion – depends on the complexity of the kinematic model of the
robot at hand. Mobile robots are modeled as a single rigid body
on wheels with three DoFs (x, y, ✓ ) (i.e., their kinematic model
consists of only one origin or joint); thus the center of motion of
the robot can be easily identified using the robot’s embodiment [6].
For example, for non-holonomicmobile robots (such as the Pioneer
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Fig. 1. The origins (TPioneer
W and TArDrone

W ) represent the 6-DoFpose of the center of the
robotic platform w.r.t. the world coordinate frame (W ) of the multi-camera optical
tracking system.

robotic platform,3) their center of motion is a point centered
between the two drive wheels. Therefore, the origin of these types
of robot is identified with the tracking system either by (i) placing
markers around the mobile robot’s perimeter and computing the
center or (ii) placing a rigid body between the wheels (Fig. 1).
For flying robots (such as the quadrotor ARDrone4), the procedure
for finding the center of motion is analogous to that of mobile
robots. The kinematics of a quadrotor are modeled as a point mass
centered at the crossing of the four rotor structures with six DoFs
(x, y, z, roll, pitch, yaw) [7,8]. Thus, the origin of the quadrotor is
identifiedwith the tracking systemeither by (i) placing a rigid body
in the crossing of the rotors or (ii) placing markers in each rotor
structure and computing the center (Fig. 1).

In the case of articulated robots, their kinematicmodel is a chain
of rigid bodies connected by joints (i.e., a kinematic chain) [9];
hence the use of tracking systems is more involved than it is
for mobile robots. For articulated robots, the goal is not only to
track the global pose of the robot, but also to track individual
joints for the verification and calibration of the robot’s kinematic
model. Hofschulte et al. [5] mounted rigid bodies directly on the
joints of LISA the biped robot to analyze and simulate its walking
behavior. Gashler [4] rigidly attached markers on the ball and
socket of the joints of the compliant ECCE humanoid robot to
estimate its unknown kinematic model. In these examples, the
robots have no outer frame; in other words, the joints and limbs
are not covered (similar to a skeleton). Therefore, the tracking
bodies are directly mounted on the joints or near the joints. In the
latter case, the relative pose between the tracking body and the
joint is measured with a ruler or measuring tape. In this work, we
tackle a more complex problem, which is tracking the individual
joints of an articulated robot whose joint origins are encapsulated
within the robot’s structure/frame and whose tracking bodies are
mounted on limbs or structures relative to the joints. As seen
in Fig. 2, the origins of the hand (Thand

W ) and head (Thead
W ) of the

complex humanoid mobile robot Rollin’ Justin5 are within the
robotic embodiment (i.e., within the flange and pan–tilt unit). This
can also be seen in robots with simpler kinematic chains, such as
the R17 robot arm from ST Robotics6 (Fig. 3) (i.e., the origin of the
base (Tbase

W ) and the origin of the last joint (T endJ
W )).

3 Mobile robots. http://www.mobilerobots.com/Mobile_Robots.aspx.
4 ARDrone Parrot. http://ardrone2.parrot.com.
5 Rollin’ Justin of the Institute of Robotics and Mechatronics at DLR (German

Aerospace Center) [10,11].
6 STRobotics http://www.strobotics.com/.

Fig. 2. Humanoid robot Rollin’ Justin. (Unknown pose between TheadRB
W –Thead

W and
ThandRB
W –Thand

W .)

Fig. 3. ST Robot arm R17. (Unknown pose between T linkM
W –Tbase

W and T gripM
W –T endJ

W .)

The proposed approach to solve this problem is to use the
mechanical properties of the joints, namely the motion that
they generate with the attached limbs. Most articulated robots
are constructed with revolute joints, which are modeled as a
single DoF that rotates around an axis [9]. In complex kinematic
chains, the combination of these joints produces a multi-DoF
joint [9]. For example, a redundant 7-DoF kinematic chain, such
as the arm of Rollin’ Justin, produces a 3-DoF joint at the end-
effector [10]. Also, the intersection of the rotating base and
the shoulder of a simple 6-DoF manipulator produces a 2-DoF
joint. These multi-DoF joints generate a spherical workspace [9].
Therefore, by placing markers or rigid bodies on the moving limbs
attached to these multi-DoF joints, measurements with a sphere-
like shape are obtained. The center of these sphere-like shapes
is the origin of the joints. Moreover, the axis of rotation of each
DoF represents the orientations of the 6-DoF frame of the origin
of the multi-DoF joint. The axis of rotation is the normal vector
of the planar/circular trajectory of measurements produced by the
individual motion of each DoF. This approach derives from work
from the biomechanics community, namely that of Gamage [12],
Cerveri [13], Halvorsen [14], and Chang and Pollard [15,16], who
proposed center of rotation (CoR) and axis of rotation (AoR)
estimation methods for human joints such as knees, wrists, and
ankles.

The main contribution of this paper is the identification of the
origins of individual joints of articulated robots, by estimating
their CoR and AoR, without any physical assumptions of the
positioning of the markers or rigid bodies w.r.t. the joints. The
CoR/AoR estimation methods are adapted from the biomechanics
community; they are used to find the origins of anatomical

http://www.mobilerobots.com/Mobile_Robots.aspx
http://ardrone2.parrot.com
http://www.strobotics.com/
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joints. Furthermore, a systematic approach is introduced for
using tracking systems on articulated robots that can provide
unambiguousmeasurements for applications such as (i) validation
and verification of kinematic chains, (ii) calibration of end-
effectors to robotic arms, and (iii) identification of relative poses
of external objects to certain joints of the robot.

The organization of this paper is as follows. Section 2 presents
an overview of techniques used in different fields to identify the
pose of markers or rigid bodies relative to a certain point or joint
using geometrical fitting methods. In Section 3, a description and
evaluation of the two main sphere-fitting methods for computing
the CoR of the joints is presented. Section 4 describes and
evaluates the plane-/circle-fitting method used to estimate AoRs.
In Sections 5 and 6 two case studies are presented. In the first case
study, a marker-based pose estimation method using the ARTrack
IR Optical tracking system for DLR’s Rollin’ Justin is presented. This
method was used to evaluate a marker-less verification routine
for the identification of the maximum bounds of the TCP (tool
center point) end-pose errors of Justin by using the on-board stereo
vision system, implemented by Figueroa et al. [17]. The second case
study deals with the identification of the kinematic parameters
(and their relative poses to the environment) of an ST Robot arm
used to embody a new version of the situated conversational
assistant (Ripley) from the work of Mavridis [18,19] using a VICON
Motion Capture (MoCap) system. Finally, Section 7 presents the
conclusions of this work.

2. Background

The identification of the pose of a marker or rigid body w.r.t. to
a certain point in a world coordinate frame is a known problem
in both the augmented reality and biomechanics communities.
Several methods have been developed to solve it for specific
applications. For example, Tuceryan et al. [20] introduce the hot
spot calibration technique to find the geometry of a pointing
device used by the GRASP augmented reality system [21]. This
pointer calibration calculates the position of the tip of the pointing
device (i.e., a digital wand or pen) relative to a mounted tracking
target, in other words, the transformation between the coordinate
system of the tracking target and the coordinate system of the
tip of the pointing device. The calibration consists of fixing the
tip of the pointing device to a certain point and acquiring n
measurements of the tracking target with n different orientations.
An overdetermined system of equations is constructed by using
the measurements made from reading a point at n different
orientations. This system of equations can be solved using a least-
squares method. Fuhrmann et al. [22] use a similar approach to
calibrate a pointing device used in the Studierstube augmented
reality system [23]. They fix the pointing device in a small pit
drilled in a table, and move the tracking target on a hemisphere.
The acquired tracking target measurements are fitted to a sphere,
and the estimated center of the sphere is the position of the tip
of the pointing device w.r.t. the tracking target. This is estimated
by optimizing the offset vector from the tracking target to the tip
of the pointing device. The optimization of this vector yields a
least-squares-fit solution. To enforce stability on this solution, the
measurements should cover a large part of the hemisphere.

The hot spot calibration approach has also been extended to
medical augmented reality applications. Sielhorst et al. [24] pre-
sented CAMPAR, a framework for integratingmultiple tracking and
visualization systems for medical augmented reality applications.
The tools used in amedical application could be drills, probes, nee-
dles, etc. These tools are calibrated to the augmented reality sys-
tems using this approach.

In biomechanics, the modeling of joint kinematics using
non-invasive measurements is a key application for motion

analysis [12]. The anatomical joints of human bodies are modeled
as spherical joints or as rotational joints with a fixed axis of
rotation [14]. To describe motion determined by joint angles, the
CoR or origin of the joint needs to be approximated. This CoR
is estimated by the relative motion of adjacent body segments
(i.e., measured by markers or rigid bodies mounted on the moving
anatomical parts) [15]. This is directly applicable to the problem at
hand. The most common solutions to estimating the CoR proposed
by the biomechanical community rely on the same assumption as
in hot spot calibration, namely that the measurements from the
markers or rigid bodies trace out a sphere centered at the joint’s
CoR. Halvorsen [14], Gamage and Lasenby [12], and Chang and
Pollard [15], to name a few, have proposed least-squares methods
for the sphere-fitting problem. The main differences between
them are the cost functions, the weighting factor, and geometrical
assumptions. Chang and Pollard [15] present an interesting review
on the existing sphere-fitting methods and propose an improved
method that yields an exact solution and is robust to joints with a
small range of motion (RoM).

The distinction between the hot spot calibration and the CoR
estimationmethods is that in the latter only the 3-DoF coordinates
of the markers or rigid bodies are used, compared to the former,
whichneeds the full 6-DoFpose. Additionally, inhot spot calibration
there is no spherical geometrical constraint applied to the least-
squares problem as in CoR estimation. In Section 3, an evaluation
and comparison of the Hot Spot Calibration method and the
CoR estimation method proposed by Chang and Pollard [15] is
presented.

The estimation of the CoR provides only the translational
component (x, y, z) of the origin of the joint. In order to find
the full 6-DoF coordinates, estimations of the orientations of the
rotational motion are needed as well. This problem is common
in the biomechanics community and similar to CoR estimation.
It is called axis of rotation (AoR) estimation [14]. Joints like the
knees or fingers may be modeled with one AoR. Solutions for
estimating theAoRof a single-DoF jointmodel rely on optimization
or plane-fitting techniques which assume the circular motion of
the tracking targets around the AoR [14,12,13]. Human joints (as
well as robotic joints) exhibit more than one degree of freedom.
Additional rotations and range of motion limitations due to a
second or third degree of freedomare present in such types of joint.
Estimating the dominant AoRs of jointswith these extra limitations
using the plane-fitting approach can lead to poor estimations of
an AoR direction [16]. Chang and Pollard [16] propose using a
combined cost function: instead of just minimizing the error along
the AoR with plane fitting, they also include the error orthogonal
to the AoR direction by using a circle-fitting approach. In Section 4,
an evaluation and description of this AoR method adapted to
articulated robot joints is provided.

3. Center of rotation (CoR) estimation

In this section the two main CoR estimation methods intro-
duced in the previous section are evaluated (hot spot calibration
and geometrically constrained sphere fitting).

3.1. Hot spot calibration

The firstmethod used to estimate the CoR is hot spot calibration
(Fig. 4). In this approach, the position of the origin (O) of the
joint w.r.t. the coordinate system of the tracking system (OW ) is
computed by estimating the relative position of the rigid body (Orb)
and the joint origin (O).

Assuming that the offset between the coordinate system of the
rigid body and the origin is constant, the relation between origin
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Fig. 4. Hot spot calibration.

in the tracking system coordinate frame OW and the origin in the
rigid body’s coordinate system Orb is given by
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Ri ti
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where R and t are the 6-DoF rotation and translation of the
rigid body in the coordinate frame of the tracking system, with
i = 1, . . . , n and n being the number of measurements. OW =
(xW , yW , zW ) and Orb = (xrb, yrb, zrb); therefore six unknown
variables exist. A linear equation system Ax = b can be constructed
using Eq. (1), as follows:
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With an overdetermined set of linear equations like in Eq. (2),
x is usually solved with a least-squares formulation. Two solutions
are proposed.

3.1.1. Exact solution using singular value decomposition
A is a 3n ⇥ 6 non-invertible matrix, so its pseudoinverse A+ is

used to solve for x, as follows:

x = A+b. (3)

A computationally simple and accurate way to compute the
pseudoinverse is by using SVD (singular value decomposition). If
A = U

P
V ⇤, then

A+ = V
X+

U⇤. (4)

3.1.2. Approximate solution using least-squares fitting
Ax = b can be solved by computing a vector x that minimizes

the Euclidean 2-norm of the sums of residuals as follows:

min kb� Axk2. (5)

3.2. Geometrically constrained sphere fitting

The second method used is the geometrically constrained
sphere-fitting approach proposed by Chang and Pollard [15]. They
assume that the markers maintain constant distance from the
CoR, but the relative motion between the measurements is not
necessarily rigid. Therefore, a non-rigid sphere-fitting approach is
used. This is implemented by considering a minimal error ✏k in the
spherical fit. This error is defined by the difference between the
radius of the sphere r and the distance of the separation between
the target measurement vk and the CoR of the sphere m (Fig. 5).

Fig. 5. Geometrical sphere-fitting error. (Illustration based on error depicted by
Chang and Pollard [15].)

Gamage and Lasenby [12] model this error by the difference of
squared lengths, as follows:

✏k = kvk �mk2 � r2. (6)

Following Eq. (6), Chang and Pollard [15] proposed the
following constrained optimization problem:
⇢
minimize : uT Su
subject to : uTCu = 1

�
, (7)

where C is a matrix form of the normalization constraint for
spherical surfaces introduced by Pratt [25]. S = DTD, where D is
the algebraic distances between n measurements and the center
of the sphere and u is the spherical fit of those measurements
(see Appendix A for the derivation). Two solutions for solving this
constrained minimization problem are evaluated.

3.2.1. Exact solution using eigenvalue decomposition (EVD)
This solution was proposed by Chang and Pollard [15]. They

convert Eq. (7) to an unconstrainedminimization problemwith the
following Lagrangian function:

L = uT Su� �(uTCu� 1), (8)

where � is the Lagrangian multiplier [26,27]. By differentiating
Eq. (8) w.r.t. u, the following generalized eigenvalue problem is
obtained:

Su = �Cu, (9)

where � is the scalar eigenvalue and u is its corresponding
eigenvector. Bookstein [28] and Fitzgibbon et al. [29] show that the
best-fit solution for this optimization problem is the generalized
eigenvector u with non-negative eigenvalue � with the least cost
according to uT Su.

3.2.2. Approximate solution using constrained optimization by linear
approximation (COBYLA)

An approximate solution is proposed for Eq. (7) by using
a constrained optimization by linear approximation algorithm
(COBYLA). COBYLA is an implementation of Powell’s nonlinear
derivative-free constrained optimization that uses a linear ap-
proximation approach [30]. Ten different initializations for this
optimization are used. This helps in avoiding local minima and
increasing the quality of the solution. The resulting vector u that
yields the minimum cost of uT Su is selected as the solution.
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3.3. CoR simulation and evaluation

In a real-world tracking system, like the ARTrack,7 deviations
in measurements lie within the range of 1–2 mm in translation
and 0°–1° in rotation coordinates,8 which are caused by (i) camera
calibration errors, (ii) camera occlusions, (iii) environmental noise
(i.e., external reflective materials in the tracking volume), or (iv)
rigid body or marker movement. This range of measurement
deviations is used as a reference to create synthetic data for the
evaluation of each proposed CoR estimation method. Because the
CoR estimation methods are essentially sphere-fitting algorithms,
they can be evaluated by analyzing how well a sphere is fitted to
randomly noisy spheres. Therefore, the simulated data is synthetic
rigid-body measurements produced by a sphere-like surface with
a range of minimal to extreme translational and rotational errors.

These noisy sphere-likemeasurements are simulated by adding
randomnormally distributed errorswith zeromean and a standard
deviation of 1mm(minimum)/2.5mm(real)/5mm(extreme) to the
translational components of the synthetic sphere measurements
and 0°–5° to the rotational components. The stability and
performance of each method are evaluated by analyzing their
behavior throughout the range ofminimal to extreme errors. Three
different numbers ofmeasurements (63, 16, and 9) are used for the
simulation. These numbers are chosen to uniformly sweep the RoM
of two rotation axes of a simulated joint. The followingmethods are
evaluated.

• HSE: Hot spot method using SVD.
• HSA: Hot spot method using approximate least squares.
• SFE: Geometrically constrained sphere-fitting method using

EVD.
• SFA: Geometrically constrained sphere-fitting method using

COBYLA.

The hot spot calibration methods yield almost identical results
throughout all of the simulations. The two methods (HSE, HSA)
show a stable behavior with low rotational error; however, the
higher the rotational error of the measurements the higher the
CoR error. This is obvious since this estimationmethod depends on
the 6-DoF measurement of the tracking targets. The SFA method is
very unstable: it can yield the best results as well as theworst-case
results. The SFEmethod is themost stable of all: it is not affected by
the rotational errors on themeasurements, and evenwith the least
number of measurements (9) it shows a mean error of 0.27 mm
for minimummeasurement errors. The SFE method is then further
evaluated by computing the fitting error between the estimated
CoR from the simulated noisy data and the nominal CoR for all the
previously simulated scenarios. The maximum identified fitting
error from the simulations is of 1 mm (for the 16 measurements
under extreme noise). However, for the real noise level simulations
it shows a fitting error of approximately 0.2 mm for all numbers
of measurements. Therefore, this method is expected to have a
deviation of 0.2–1 mm for CoR estimations with real data.

4. Axis of rotation (AoR) estimation

As mentioned earlier, the common approach for estimating
the AoR of a joint is by creating a circular set of measurements
around the AoR and minimizing their motion along the axis
direction. The approach proposed by Halvorsen [14] estimates
the combined CoR and AoR as the line which best describes the

7 ARTrack tracking system. http://www.ar-tracking.com/home/.
8 These measurement deviations are obtained empirically from a mounted Real-

Time ART Tracking system using four cameras with a mean accuracy of 0.04 pixels
and a system speed of 100 fps.

Fig. 6. AoR estimation (measurement vk is constrained to a circle with radius r on
a plane normal to n with error ek).

Fig. 7. Planar error estimation: the plane is modeled with normal n and a
nominal distance µ from the plane to the tracking system world coordinate frame
(measurement vk is described in terms of the offset µ and centroid v).

collection of instantaneous rotational axes generated from pairs
of measurements; the performance of this method depends highly
on the choice of separation distance between the measurements.
Gamage [12] and Cerveri [13] both propose a two-step procedure:
(i) estimate the CoR by using sphere-fitting techniques and (ii) find
the CoR direction (AoR) by plane fitting thosemeasurements along
the axis direction. Chang and Pollard [16] improve this approach
by combining plane fitting and circle fitting in their minimization
function. They show that their method is more appropriate for
practical applications where the joints exhibit multiple degrees of
freedom and the assumption that the joint will generate a perfect
circular rotation around an axis does not hold. This approach
consists of minimizing a cost function that models how well the
measurements vk maintain a fixed distance from the CoR m (i.e.,
minimal deviation from circle/sphere radius r) and remain on a
plane orthogonal to the AoR (Fig. 6). This is estimated as an error
vector ek with two components.

• Planar error �k: the magnitude of ek parallel to the AoR.
• Radial error ✏k: the magnitude of ek in the plane orthogonal to

the AoR.

When considering the planar error �k and the radial error
✏k individually, this would model plane fitting and cylinder
fitting, respectively. Therefore, Chang and Pollard [16] propose the
following combined cost function:

f =
NX

k=1

(�2
k + ✏2

k ). (10)

The planar error is modeled by calculating the difference between
the component of vk parallel to the normal of the plane n and the
nominal distance of the plane to the world coordinate system µ

http://www.ar-tracking.com/home/
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(Fig. 7). The planar cost function is given by the following equation:

fp =
NX

k=1

(�k)
2 =

NX

k=1

(uk · n)2, (11)

where uk = vk � v are the marker measurements expressed
relative to the centroid of their trajectories (see Appendix B.1 for
derivation). The radial errormeasures the deviation between (i) the
distance of the measurement vk to the CoR m and (ii) the radius r
of the best-fitting cylinder whose axis of symmetry is the direction
of the CoR n. This cost function is formulated as follows:

fr =
NX

k=1

(✏k)
2 =

NX

k=1

(kwkk � r)2, (12)

where wk = (I � nnT )(vk � m) is the shortest vector from the
target measurement to the line of the CoR m (see Appendix B.2
for derivation). Finally, the combined planar–radial cost function
is constructed, as follows:

f = fp + fr =
NX

k=1

(�k)
2 +

NX

k=1

(✏k)
2 (13)

f = nT Sn +
NX

k=1

(k(I � nnT )(vk �m)k � r)2, (14)

where S is the matrix form representation of (uk)
2. We solve for n

with an iterative solution, the downhill simplex method [31]. The
final equation for the AoR is

AoR = m + ⌧n. (15)

This is a straight line passing through m in the direction of n
with a scalar ⌧ . ⌧ is a scalar constant proposed by Gamage and
Lasenby [12] that defines the centers of the circles traced out by
the measurements. This constant is computed as follows:

⌧ = (v �m) · n. (16)

The AoR estimation method is simulated with the RoM and
kinematic limitations of a hand joint. Circular rotations around
the z-axis and around the x-axis are simulated by applying the
same three noise levels applied to the CoR simulations. The
robustness of the AoR estimation is evaluated using different
numbers of measurements for each circular trajectory (19, 10, and
6 measurements). The z-rotation estimation showed a maximum
error of 0.009 rad (0.5°) and the x-rotation estimation showed a
maximum error of 0.012 rad (0.6°). Overall the AoR estimation for
the z-axis has a mean error of 0.2° and for the x-axis of 0.4°.

5. Case study 1: verification of humanoid Justin’s upper body
kinematics

As mentioned in Section 1, a marker-based verification routine
is implementedwith theART tracking system to evaluate amarker-
less verification routine for the identification of the maximum
bounds of the TCP end-pose errors of DLR’s Justin [17]. The routine
consists on estimating the end-pose of Justin’s hand w.r.t. its
camera reference frame relative to Justin’s head. This is done by
estimating the pose of 3D point clouds of the hand. In this work,
the pose is estimated by mounting rigid bodies on the hand and
head of Justin.

Fig. 8. Justin’s implicit loop closure using the ART tracking system.

5.1. ART set-up for pose estimation

Justin’s lab has a mounted calibrated system of six tracking
cameras from ARTrack tracking systems GmbH,9 with a mean
camera accuracy of 0.04 pixels and speed of 100 fps for pose
computation. Justin is positioned at the center of the tracking
volume (Fig. 8). Two rigid bodies are mounted on Justin: (i) on his
head (heT ) and (ii) on his hand (haT ).

Th
art is the transformation of the tracking system’s base

coordinate system to the head joint.

Th
art = TheT

art T h
heT . (17)

T TCP
art is the transformation of the tracking system’s base coordinate

system to the TCP pose of the hand.

T TCP
art = ThaT

art T TCP
haT . (18)

The coordinate frames TheT
art and ThaT

art are the 6-DoF pose of the
rigid bodies obtained by the tracking system. Th

heT and T TCP
haT are

their transformations to their respective joint coordinate system.
Once Th

art and T TCP
art are obtained, the pose of the TCP w.r.t. the head

coordinate system T TCP
h can be estimated.

TCPart = T TCP
h = (Th

art)
�1T TCP

art . (19)

T TCP
h can also be computed by the forward kinematics between the

head joint and the arm kinematic chain.

TCPfk = T TCP
h = Ta

h T
TCP
a . (20)

Thus, an implicit loop closure of Justin’s upper body kinematics
between the measured pose using the tracking system TCPart
and the measured pose from forward kinematics TCPfk can be
generated. Justin’s head is used as the reference coordinate
system to close the sensory system kinematic chain with the arm
kinematic chain. Ta

h is the transformation of the head to the arm
base, computed by a simple forward kinematic model. T TCP

a is the
transformation from the arm base to the TCP, computed by a
forward kinematic model considering the measured torques and
gear stiffness. Ideally TCPfk := TCPart ; however, due to unidentified
errors in the kinematic chain this equality does not hold, and
the errors between them must be identified. The estimation of
TCPart is quite straightforward when Th

heT and T TCP
haT are known.

This is not the case. It cannot be assumed that the rigid bodies

9 ARTrack tracking system. http://www.ar-tracking.com/home/.

http://www.ar-tracking.com/home/
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Fig. 9. Close-up view to the rigid bodies relative to joint coordinate systems. (Left)
head rigid body (heT ) relative to head coordinate system and (right) hand rigid body
(haT ) relative to arm TCP coordinate system.

are always mounted at every same position and orientation. To
identify Th

heT , the distance and orientation between the head rigid
body origin and the origin of the coordinate system of the head
joint is needed. For T TCP

haT , the distance and orientation between
the mounted hand marker and the TCP end-pose is needed. These
distances and orientations cannot be physically measured with a
ruler or measuring tape, mainly because for the former the origin
of the head joint is inside the pan–tilt unit used to move the head
and for the latter the TCP end-pose is located inside the flange of
the last joint of the kinematic chain. Therefore, themain task of this
pose estimation method lies on the identification of relative pose
of the rigid bodiesw.r.t. their corresponding joint origin coordinate
system. A calibration procedure to estimate them is presented in
the following section.

5.2. Calibration of rigid bodies to Justin

The calibration of the rigid bodies to Justin consists of estimating
the transformations Th

heT and T TCP
haT (Fig. 9), thus identifying the pose

of the head Th
art and the pose of the TCP T TCP

art w.r.t. the tracking
system’s base coordinate frame.

The CoR and AoR estimation methods presented in Sections 3
and 4 are used to find these relative transformations. Therefore,
the calibration procedure is divided into two steps.

1. Estimation of the position of the origin (CoR).
2. Estimation of the orientations of the obtained origin (AoR).

The first step for the calibration procedure is to create sphere-
like measurements around each joint. The joint of Justin’s head is
composed by a pan–tilt unit (i.e., two DoFs). The pan unit has an
RoM of �90° to 90° and the tilt unit has RoM of �20° to 40°. The
last joint of the arm (i.e., the hand TCP) has three DoFs (x, y, z);
the RoM of the x-axis is�45° to 80°, that of the y-axis is�170° to
170°, and that of the z-axis is �45° to 135°. Neither of these two
joints can create a complete sphere, but they can create at least one
hemisphere of the sphere (Fig. 10).

As mentioned earlier, the head joint has only two DoFs (y-axis
and z-axis). The hand has three DoFs (x-axis, y-axis, and z-axis);
however, these three DoFs at the TCP end-pose are achieved by
the redundant kinematic chain of the complete arm. The TCP end-
pose is actually a virtual pose obtained by applying an offset to the
last coordinate frame of the kinematic chain, which is the sphere
(Fig. 11). When computing the CoR or AoR of the TCP end-pose,
what is actually computed is the sphere joint coordinate frame, and
then an offset is applied to reach the TCP.When rotating around the
x-axis or z-axis of the TCP, the x-axis or z-axis of the sphere rotates,
respectively; however, due to the kinematics of the sphere joint the
y-axis does not exhibit this behavior. Therefore, only two AoRs are
estimated for the head and hand joint, and the last orientation is
obtained by computing an orthogonal vector to the two estimated

Fig. 10. Generated spheres for complete RoM (left) of the hand joint (right) of the
head joint.

Fig. 11. TCP sphere hand kinematics.

Fig. 12. 36measurements constructed of six circular trajectories around the x-axis
and six around the z-axis.

ones. The main goal of this calibration procedure is to identify the
rigid transformation between the mounted tracking targets and
their joint’s coordinate system, T TCP

haT and Th
heT (Fig. 8). This T is

constructed as follows:

R =
⇥
AoRx, AoRy, AoRz

⇤
(21)

t =
⇥
mx,my,mz

⇤T (22)

T =
⇥
R, t

⇤
, (23)

where AoRx, AoRy, AoRz are the directions of the x, y, and z-
axes estimated with the planar–radial fitting technique, and m
is the CoR estimated with the sphere-fitting technique. To avoid
taking too many measurements, we create a sphere composed of
measurements tracing out circular planes around the x/y-axis and
around the z-axis. Therefore, ifN planes are created fromuniformly
separated angles between the RoMof the z-axis andM planes from
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uniformly separated angles between theRoMof the x/y-axis,N⇥M
measurements are obtained fromevery plane intersection (Fig. 12).
Each plane is used to estimate an AoR of its corresponding axis. The
final AoR is the average of all the planes; this is applied to the two
estimated axes. For the hand, it is computed as follows:

AoRz = rotAvg(AoR0
z , AoR

1
z , . . . , AoR

N
z ) (24)

AoRx = rotAvg(AoR0
x , AoR

1
x , . . . , AoR

M
x ). (25)

To compute the average of rotations, we solve for a minimization
problem based on the Frobenius norm with a Euclidean metric
on the rotation group SO(3), as described by Sharf et al. [32] and
Gramkow [33].

The third orientation is computed as the cross-product of Eqs.
(24) and (25) as follows:

AoRy = AoRz ⇥ AoRx. (26)

The full procedure to compute the transformation of a tracking
target to the origin of its joint is listed in Algorithm 1.

Algorithm 1 Frame Estimation
Input: N (planes around Z), M (planes around X)
Output: T (rigid transformation of measurements to origin)
D constructDforCoR(N ⇥M)
m computeCoR(D)
Dz  extractZplanes(D)
Az  constructAforAoR(Dz,N)
AoRz  computeAoR(Az)
Dx  extractXplanes(D)
Ax  constructAforAoR(Dx,M)
AoRx  computeAoR(Ax)
AoRy = AoRx ⇥ AoRz
T = (AoRx, AoRy, AoRz,m)

In practice, it cannot be assumed that AoRx and AoRz are
perfectly orthogonal to each other, because they are estimated
independently.Wedealwith this by normalizing the cross-product
of AoRx and AoRz . Therefore, line AoRy = AoRz ⇥ AoRz of Algorithm
1 is actually computed as follows:

Crossxz = AoRx ⇥ AoRz (27)
AoRy = Crossxz/kCrossxzk. (28)

5.3. Error identification

Now that the missing transformations (Th
heT and T TCP

haT ) of the
implicit loop closure (Fig. 8) are obtained from the calibration
procedure, the pose of Justin’s TCP can be estimated. To recall the
implicit loop closure, TCPfk and TCPart are both the pose of the TCP
w.r.t. the head joint (T TCP

h ); however each of them is obtained with
a different loop closure:

TCPart = T TCP
h = (Th

art)
�1(T TCP

art ) = (TheT
art T h

heT )
�1(ThaT

art T TCP
haT ) (29)

TCPfk = T TCP
h = Ta

h T
TCP
a . (30)

TCPfk is the pose of the TCP computed using the measured joint
positions with a forward kinematic model (i.e., this is the pose that
Justin is reaching according to its position sensors on each joint).
TCPart is the pose of the TCP estimated by the tracking system.
Ideally, TCPart and TCPfk should yield the same measured pose;
however, as can be seen in Fig. 13, this is not the case.

The error between TCPart and TCPfk is represented as an error
tuple e = het , e✓ i extracted from the 1T = (TCPart)

�1TCPfk, as
shown in Fig. 14.

Fig. 13. Measured TCPfk versus estimated TCPart .

Fig. 14. Error between TCPart and TCPfk: 1T = (TCPart )
�1TCPfk .

Fig. 15. Justinwithin ART camera setup.

The error tuple e is composed of et = (1T (t)), which is the
translational component of 1T that represents the translational
error between the coordinate frames. e✓ = angleaxis(1T (R)) is
the angle around the rotation axis of the rotational component of
1T in angle–axis representation. 30 random poses are generated
and the error e between TCPart and TCPfk is estimated for each.
Justin’s kinematic chain has the ability to reproduce the same
joint positions with extremely high accuracy (0.001°). Therefore,
to evaluate the reliability and performance of the tracking system,
the same hand end-poses with different Justin torso positions are
reproduced. Justin’s torso is set to 0°, 90°, and�90° w.r.t. the ART
base coordinate system, as shown in Fig. 15.

Five testswere performed, and their results are listed in Table 1.
The translation component of the error tuple et is evaluated by
comparing its length ketk throughout all the different hand poses
and torso positions. In the real set-up, only four cameras were
functional (c1, c2, c4, c6); thereforemoving Justin aroundwill cause
occlusion of the hand rigid body to some of the cameras. The
standard deviations of errors for all of the torso positions are
around 1 mm for ketk and between 0.2° and 0.3° for ke✓k; this
deviation reflects the noise in the measurements system as well
as the deviations in the estimation procedure. The mean errors
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Table 1
Estimated errors with different Justin torso positions.

Error/torso angle 0° 90° 90° �90° 90°

Max ketk (cm) 0.86 0.79 0.79 1.04 0.82
Mean ketk (cm) 0.62 0.56 0.56 0.76 0.48
Std ketk (cm) 0.1 0.11 0.11 0.12 0.15
Max ke✓k (°) 1.34 1.86 1.86 1.59 1.23
Mean ke✓k (°) 0.93 1.20 1.66 1.14 0.89
Std ke✓k (°) 0.27 0.31 0.32 0.27 0.21

Fig. 16. Ripley v1.0.

do show some variations between torso positions; this is caused
partly from the position inaccuracy of the robot joints and the
flexibility in the gears and light-weight structures of the kinematic
chain. However, the translation errors of the fourth position (torso
in�90°) are considerably higher (2 mm) than all of the other torso
positions. This variation can be caused by camera occlusions due
to the position of the head of Justin, by occluding themain cameras
(c1 and c2) the errors in the measurements from the tracking
system are higher (nonetheless, still within the range of the overall
estimated errors). This is a limitation for this estimation method;
however, since the goal is to validate our previous work [17], the
environment is controlled to take account of these limitations.
From the complete evaluation, it is concluded that this method is
robust and consistent, and thus it suitable to be used as a ground
truth for any other method.

6. Case study 2: identification of Ripley the Robot v2.0’s
kinematics

Ripley the Robot is the name of a situated conversational
assistant created byMavridis [18,19]. This conversational assistant
embodies a modular architecture in which a grounded situated
model (GSM) resides in a centrally located module, surrounded
with language, perception, and action-related modules. The
full framework for the GSM enables the robot to integrate
both language and sensory information about the situation
and environment. The robot’s environment consists of a table
populated with objects and a human interacting with both the
robot and the objects (Fig. 16).

The situation model contains all of the information the robot
acquires about itself and the environment, via its sensory modules
(vision, language, proprioception). It contains representations of
entities potentially constructed as agents (itself, the human, the
objects) and the spatial relations between them. Each potential
agent has a physical (geometric) description of its body associated
with it, as well as a mental (beliefs, etc.) description. Alongside
these standardized representations, in the GSM reside a number
of standard processes for updating the representations given
incoming information from the senses (vision, proprioception) as
well as language (verbal descriptions), for reducing certainty in

Fig. 17. Ripley v1.0 mental model partial visualization of the most likely state of
affairs of a situation.

Fig. 18. Ripley v2.0 set-up.

the case that no new incoming information exists, and for keeping
moments and events in an elementary episodic memory [34]. This
situation model and its visualization (Fig. 17) make up the core
module of the GSM architecture. It consists of agents (itself, the
human, the objects) and the spatial relations between them.

Every time new sensory data is obtained, the situation model
is updated, and the resulting internal visualizations change. The
sensory data includes not only vision-derived data, but also the
feedback from the proprioceptor module, which uses the position
of the encoders of the motors of each joint and feeds them
to a kinematic model in order to represent the position and
configuration of the robot in the visualization of the current
situation. If the internal kinematic model that the robot constructs
of its body is incorrect, the GSM will not function correctly. For
example, it will assume that it is viewing the world from a position
that differs from reality; and thus the positioning of its visual
percepts within its mental model will be wrong (i.e., objects might
not only appear at incorrect positions, but might also appear to be
moving when the robot is moving, while in reality they might be
stationary). In this case study, we adapt the GSM framework to
a completely different embodiment as compared to the original
embodiment of Ripley v1.0: a new robotic arm, with a different
kinematic model and fewer DoFs (Ripley v1.0 with seven DoFs
versus Ripley v2.0 with five DoFs) (Fig. 18).

In order for the GSM framework toworkwith a different robotic
arm (ST Robot R17), certain relative positions need to be identified,
mainly the relative position of the origin of the first joint of the
robot w.r.t. the table and the position of the camera mounted on
the robot end-effector. As shown in Fig. 19, the origin of the first
joint is somewhere inside the robots embodiment, as well as the
end-pose of the last link, so these positions cannot be measured.
The identification of these parameters is crucial for the adaption of
the new robotic arm to the GSM framework. Therefore, the VICON
Motion Capture system10 is used to identify the origins of the first
joint of the robot (i.e., the base) and the last joint of the robot (i.e.,
end-effector).

10 VICON Motion Capture System. http://www.vicon.com/index.html.

http://www.vicon.com/index.html
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Fig. 19. Ripley v2.0 setup and loop closures in a VICON MoCap system.

6.1. VICON set-up for unknown pose estimation

Ripley v2.0’s lab has a mounted VICON MX Motion Capture
(MoCap) system with eight cameras and speed of up to 2000 fps.
Ripley’s table is positioned at the center of the tracking volume and
mounted markers throughout the manipulator structure and the
table (Fig. 19).

Tbase
W is the pose of the base joint in the tracking system’s

coordinate frame, which is estimated as follows:

Tbase
W = T linkM

W Tbase
linkM . (31)

T endJ
W is the pose of the end-effector in the tracking system’s

coordinate frame, which is estimated as follows:

T endJ
W = T gripM

W Tbase
gripM . (32)

T gripM
W and T linkM

W are the poses of themarkers mounted in the robot
obtained from theMoCap system. Tbase

linkM and T endJ
gripM are the unknown

relative poses that are estimated using the proposed joint origin
identification method. Knowing these two poses, we can compute
the relative pose of the robot w.r.t. the table:

T table
base = (T table

W )�1Tbase
W , (33)

where T table
W is the pose of the center of the table obtained from

the MoCap system and the relative pose of the camera w.r.t. end-
effector is T endJ

gripM .

6.2. Unknown pose estimation

Sphere-like measurements are created around the first multi-
DoF joint of the manipulator, by rotating the first link of the robot
throughout its RoM (�140° to 160°) in 10° increments; the base
of the robot was rotated from �70° to 180°. The end-effector has
a more limited RoM: it rotates around just one axis from�100° to
100°. In Fig. 20, a visualization of the obtainedmeasurements from
the joint trajectories is shown. The red spheres are the markers
from the table, robot base, and end-effector; the green spheres
are the joints of the robot; and the black spheres are the marker
measurements mounted on the moving bodies.

The same approach from Case Study 1 is used to identify the
unknown relative poses Tbase

linkM and T endJ
gripM . However, in this case only

the three DoFs of the origins (i.e., the CoR) are computed, because
the rotational components of the robot and the table have the same
orientation. Moreover, the rigid body of the table is calibrated in
the tracking system to have the same orientations as the world
coordinate frame, so estimating the AoRs was not necessary. Once
the missing relative poses are identified, the kinematic model
from the GSM framework is updated accordingly, and an accurate
situation model is obtained (Fig. 21).

Fig. 20. Ripley v2.0 calibration. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

Fig. 21. Ripley v2.0 mental model partial visualization.

Table 2
Estimated translational error for Ripley v2.0 end-poses.

Error Max Mean Std
ketk (mm) 4.61 4.56 0.04

6.3. Estimated pose evaluation

To evaluate the quality of the obtained estimations, the relative
pose of T endJ

W w.r.t. Tbase
W is estimated as follows:

T endJ
base = (T endJ

W )�1Tbase
W . (34)

When recording the measurements of the markers from the
tracking system, the positions of the encoders of each motor of the
manipulator are recorded aswell. Therefore, the error between the
absolute translational component of T endJ

base (tendJbase ) and the absolute
Cartesian pose of the end-effector w.r.t. the base computed by the
robot’s on-board controller (trobot ) is used to evaluate the system.
The difference between the norms of these two vectors is the
translational error ketk. This translational error is computed for ten
configurations of the kinematic chain generated from the sphere-
like measurements (Table 2). The mean ketk is 4 mm. These errors
can caused by several sources: (i) calibration of the encoders of
the manipulator, (ii) positioning of the markers, and/or (iii) errors
in the estimation procedure. This is not a direct evaluation of
the quality of the estimation, because it is not certain that the
positioning of the robot is completely accurate. However, with this
evaluation it can be concluded that the estimation of the relative
poses has a translational error below 4mm and standard deviation
of 0.04 mm.
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7. Conclusion and discussion

This paper presented an approach for identifying joint origins
of articulated robots using CoR and AoR methods adapted from
the biomechanics community. This approach was demonstrated
to be used with multi-camera optical tracking systems; however,
it is not limited to them: any other type of tracking system that
generates 3-DoF poses of tracking markers can be used.

An alternative to identifying the poses of the joint origins
of articulated robots is to physically measure or approximate
them (just like is done with mobile platforms). However, these
measurements or approximations are unreliable and uncertain:
if a real ground truth needs to be extracted or if the possible
errors in the kinematic chains are within millimetric range, a
joint identification process like the one proposed has to be
applied. If a certain method needs to be evaluated, the evaluation
method should be implemented in a systematic and mathematical
approach. This is what motivated us to investigate this topic
and present two case studies to show the importance of this
identification procedure.

In the first case study, a pose estimation method using the IR
optical tracking system mounted in Justin’s lab was implemented.
A thorough description of the rigid body calibration procedure
is presented. The calibration procedure is evaluated on synthetic
and real data. With real data, a standard deviation of 0.1 mm
on the translational component of the hand joint and 0.3 mm
on the translational component of the head joint is achieved.
From the evaluation results, we concluded that this method is
robust and efficient under certain limitations. These limitations are
regarding possible occlusions by the position of Justin within the
lab. However, this is not a problem, since this method was used as
a ground truth for a marker-less pose estimation method.

The second case study was less complex: it was only necessary
to find the CoR of two joints of a 5-DoF robotic arm mounted
on a table, in order to adapt the GSM cognitive architecture to
a new embodiment. However, the identification of these origins
was crucial for the adaptation of the GSM framework to the
new robotic arm or else not only the situation model would
have been inaccurate, but also the objects would appear to be
moving while they were not, creating multiple problems, such
as triggering and registering false events in the episodic memory
of the robot. Fortunately, our method was readily applied to this
case too, achieving a standard deviation of 0.04 mm on translation
estimation and alleviating any such problems.

Thus, by providing motivation, comparison to existing work,
derivation and first evaluations, and application to two cases of our
method, wewere able to concretely illustrate its wide applicability
and effective performance, towards creating accurate kinematic
models for many different robotic embodiments.

Appendix A. Derivation of CoR estimation by Chang and
Pollard [15]

The CoR estimation by Chang and Pollard [15] is based on
a method for non-rigid sphere fitting of measurements with a
constant radius r , developed by Pratt [25]. Considering a point v =
(x, y, z)T on the surface of a spherewith centerm = (xc, yc, zc) and
radius r , the following equation for a sphere can be formulated:

(x� xc)2 + (y� yc)2 + (z � zc)2 � r2 = 0. (A.1)

A basis function of coefficients u = (a, b, c, d, e)T is extracted from
Eq. (A.1) by rewriting it as

aw + bx + cy + dz + e(1) = 0. (A.2)

w = x2 + y2 + z2 and (w, x, y, z, 1) are basis functions whose
coefficients are defined in u. Therefore, to find the u that fits to a
data point v, the following algebraic distance � is calculated:

�(u) = (w, x, y, z, 1)T u. (A.3)

The values of the polynomial coefficients in u determine the CoR
and radius of the sphere. These values are relative rather than
absolute; this enables a to be a free parameter used to set a
constraint to the cost function. The choice of this constraint is
the most important step for achieving a good fit [25]. Chang and
Pollard [15] propose using the following normalization constraint
developed by Pratt [25]:

b2 + c2 + d2 � 4ae = 1. (A.4)

Using Eqs. (A.1) and (A.2), (A.4) can be rewritten as

a2r2 = 1. (A.5)

A least-squares problem is formulated using Eq. (A.3), which
is the algebraic distance �k. The algebraic distances �k of all n
measurements are written in a data matrix D as follows:
2

666664

�1
...
�k
...
�n

3

777775
=

2

666664

w1 x1 y1 z1 1
...

...
...

...
...

wk xk yk zk 1
...

...
...

...
...

wn xn yn zn 1

3

777775
u = Du. (A.6)

To find the spherical fit u, the sum of squared algebraic distances �
results in the following cost function:

f = (Du)T (Du) = uTDTDu. (A.7)

The matrix form of the normalization constraint Eq. (A.4) can be
expressed as follows:

⇥
a b c d e

⇤

2

6664

0 0 0 0 �2
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
�2 0 0 0 0

3

7775

2

6664

a
b
c
d
e

3

7775

= 1 = uTCu (A.8)

C is the constraint matrix, and renaming DTD from Eq. (A.7) to S
leads to the following constrained optimization problem proposed
by Chang and Pollard [15]:
⇢
minimize : uT Su
subject to : uTCu = 1

�
. (A.9)

As stated earlier, the vector u is composed of the basis function
coefficients that define a sphere u = [a, b, c, d, e]T . By comparing
Eqs. (A.1) and (A.2),m and r are calculated as follows:

m = (xc, yc, zc)T = � 1
2a

(b, c, d)T (A.10)

r = kmk2 � e
a
. (A.11)

Appendix B. Derivation of AoR estimation by Chang and
Pollard [16]

The combined function proposed by Chang and Pollard [16] is a
combination of a planar and radial cost function:

f =
NX

k=1

(�2
k + ✏2

k ) = fp + fr . (B.1)
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B.1. Planar cost function

The planar cost function is formulated as follows:

fp =
NX

k=1

(�k)
2 =

NX

k=1

(vk · n� µ)2. (B.2)

µ can be found by setting the derivative of Eq. (B.2) to zero. This
yields the following equation:

µ =
 

1
N

NX

k=1

vk

!

· n = v · n. (B.3)

v is the centroid of the trajectory of all measurements. Eq. (B.2) can
be rewritten as

fp =
NX

k=1

(vk · n� v · n)2. (B.4)

If the measurements are expressed relative to the centroid of their
trajectories, as follows:
uk = vk � v. (B.5)
Then Eq. (B.4) can be rewritten as

fp =
NX

k=1

(�k)
2 =

NX

k=1

(uk · n)2. (B.6)

This cost function can be rewritten to matrix form using the
standard formulation of fitting of algebraic surfaces proposed by
Pratt [25]. Construct a matrix A composed of each measurement
relative to the trajectory centroid uk, as follows:

A =
⇥
u1, . . . , uk, . . . , un

⇤T
. (B.7)

Then Eq. (B.6) is converted to

fp = kAnk2 = nTATAn = nT Sn. (B.8)

B.2. Radial cost function

The radial errormeasures the deviation between (i) the distance
of themeasurement vk to the CoRm and (ii) the radius r of the best-
fitting cylinder whose axis of symmetry is the direction of the CoR
n. Given the axis direction n and any point on the line of the CoR
m, the shortest vector from the target measurement to the line is
estimated as the vector wk:

.wk = (I � nnT )(vk �m) (B.9)
I is a 3 ⇥ 3 identity matrix. (I � nnT ) is a matrix that operates
on a vector by subtracting the parallel component of the vector to
direction n. The resulting vector wk is the orthogonal component
of the vector to direction n. The radial cost function is estimated as
the total squared radial error, as follows:

fr =
NX

k=1

(✏k)
2 =

NX

k=1

(kwkk � r)2. (B.10)

r is calculated by setting the derivative of Eq. (B.10) to zero. This
yields the following equation:

r = 1
N

NX

k=1

kwkk. (B.11)

Summing Eqs. (B.6) and (B.10), the combined planar–radial cost
function is constructed, as follows:

f = fp + fr =
NX

k=1

(�k)
2 +

NX

k=1

(✏k)
2 (B.12)

f = nT Sn +
NX

k=1

(k(I � nnT )(vk �m)k � r)2. (B.13)
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