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Abstract—For robots to be able to naturally co-habitate 
human spaces, as well as to interact with single humans or groups 
of humans, they should be able to navigate in ways that are 
human-friendly, and appropriate to human spatial interaction 
social norms, such as keeping personal spaces. For that purpose, 
we are developing a special theory which extends path planning, 
which we call social path plan, which allows humans or groups as 
obstacles or goals. In order to provide tuning for our simulation 
results, we are acquiring a natural human interaction dataset, 
through measurements from multiple laser ranging sensors 
positioned at a cross-roads indoor space. We thus describe our 
system consisting of spatial and temporal alignment algorithms 
for multiple laser sensors, as well as foreground detection, sensor 
data fusion, segmentation, tracking, two-legged position and pose 
estimation, and event detection. The method presented can be 
easily extended to larger spaces and applied for many other 
application domains beyond our main goal of learning optimal 
spatial interaction behaviours for human-robot interaction.

Keywords— Human-Robot Interaction, Spatial, Laser Range 
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I. INTRODUCTION

People tracking has been widely used in various 
applications, such as surveillance, activity recognition, building 
security and traffic flow analysis. There is a lot of developed 
tracking system for people tracking based on video streams [1],
[2]. These systems face difficulties when dealing with many 
people in a relatively large area, due to the frequent occlusion 
among people and the difficulty in integrating video streams 
from multiple cameras. The laser range finder has received 
increasing attention for tracking problems in recent years. A 
laser range finder is a device which uses a laser beam to 
determine the distance to an object. The most common form of 
laser rangefinder operates on the time of flight principle by 
sending a laser pulse in a narrow beam towards the object and 
measuring the time taken by the pulse to be reflected off the 
target and returned to the sender.  

Because of good precision and fast sensing ability, laser 
range finder has become one of the most popular equipment in 
the robotics community. Knowledge about the presence, 
position, and motion state of people enables robots to better 
understand and anticipate human intentions and actions. Apart 
from human-robot interaction and cooperation scenarios, 

applications of laser-based people tracking include also 
surveillance, crowd control, or pedestrian detection for 
intelligent cars. 

Additionally, tracking persons with laser range finders does 
not violate personal rights and puts privacy law advocates at 
ease to a certain degree. Using only one static LRF limits the 
area for tracking to its maximum detection range. Also 
occlusions may disturb the tracking. Both problems can be 
avoided by adding more laser range finders to the scene, 
however, then special algorithms for spatio and temporal 
alignment, as well as data fusion, should be included in the 
processing pipeline of the people tracking system.  

Several range scan registration techniques based on the 
Iterative Closest Point (ICP) have been introduced and 
successfully adopted in mobile robot localization [3], [4]. The 
ICP algorithm uses an iterative process in the following steps: 
first, a set of points in one or both range images are selected; 
then, correspondences between two range scans are 
established; finally, an error metric is defined and minimized to 
compute the rigid-body transformation. This “select-match-
minimize” procedure is repeated until two range scans are 
converged. Since true correspondences are generally unknown 
for range scan registration, the ICP algorithm utilizes the 
closest points in Cartesian coordinate frame as an 
approximation of true correspondences.  

Towards enabling human-friendly and socially appropriate 
human-robot spatial interaction, we have thus introduced the 
“social path planning” problem formulation in [5], enumerating 
six specific subproblems, which include humans or groups of 
humans either as obstacles or as goals of the social path 
planner. We have furthermore provided an initial solution of 
the problem using the fast-marching squares algorithm [6]. 
However, in order to be able to tune the parameters of our 
solution so that they are closer to actual human behaviors 
respecting behavioral norms such as personal spaces, we need 
datasets of appropriate format including longer-term recording 
of human spatial interactions.  

For that purpose, we are presenting in this paper a system 
utilizing multiple laser ranging sensors, which was installed in 
an indoors highly frequented cross-roads space. Our system 
includes stages for spatial and temporal alignment, as well as 
foreground detection, sensor data fusion, segmentation, 
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tracking, two-legged position and pose estimation, and event 
detection. The methods presented can be easily extended to 
larger spaces and applied for many other application domains 
beyond our main goal of learning optimal spatial interaction 
behaviors for human-robot interaction. 

We will thus proceed in this paper by providing 
background on relevant existing research, including the basics 
of our six sub-problem decomposition of the social path 
planning problem. Then, in section III, we will describe our 
data set capture conditions and specifications. In the next 
section (IV), we will present spatial and temporal alignment 
algorithms and results when applied to our dataset. Then, in 
section V, detection and tracking will be covered, all the way to 
position and pose derivation from feet tracking, and event 
derivation, followed by a forward-looking concluding section. 

II. BACKGROUND

For multi LRF matching, at least four categories of methods 
that could potentially be used. First, known approaches in 
mobile robotics such as [7], [8]. Unfortunately these methods 
cannot be used without robots, since these methods use 
odometry information to know the relative movement. Second, 
methods utilizing moving object trajectories over time, towards 
matching. These methods extract for example a walking people 
trajectory and use point registration approaches as a matching 
tool to know the constraints between LRFs [9], [10]. However, 
the main hypothesis in these methods is the LRF’s observations 
are temporal aligned, which is rarely the case in real-world 
systems. Third, one could utilize static objects in scan data to 
match the LRFs. Static objects that are observable from LRFs 
could be used as a matching reference. Two famous methods 
for static objects matching are ICP [3], [4] and polar scan 
matching (PSM) [11]. Also, computer vision point registration 
methods could be used [12]. Occlusion and symmetries in 
environment could severely deteriorate the performance of 
such kind of methods, although an adequate pre-existing 
background model might be used as a solution to such 
problems.  

Most of human detection studies emphasize motion 
tracking. In [13] kalman filtering is used to track the movement 
of multiple fixed LRFs. In [14], [15], [16] a walking model is 
proposed to extract the leg position and track the legs using an 
extended Kalman filter (EKF). In [17], [18] multiple 
hypothesis tracking (MHT) is applied to the problem of human 
leg tracking. Another scheme based on target tracking is the 
sample-based joint probabilistic data association filter 
(SJPDAF) in [19]. As we also need to track the people who are 
standing and but not moving, foreground detection in our work 
is applied based on difference from the background model, and 
not just the movement of objects. 

In our previous work which introduced the definition and 
subproblems of “social path planning” [5], a novel 
classification and a mathematical formalization of all the 
different cases was proposed, and decomposed to 6 different 
types of subproblems: 

1) Single human, individual: 

a) Robot to point. Regular path planning with special 
consideration of humans as obstacles. 

b) Full interaction: 1) approach human, 2) interact, 
keep interaction, 3) disengage. 

c) Follow human. 
2) Group of humans: 

a) Robot to point. Regular path planning considering 
groups of humans as special obstacles. 

b) Observe group, ask for permission to enter. 
c) Full interaction: 1) enter the group, 2) interact, keep 

interaction, 3) disengage. 

III. DATA SET DESCRIPTION

Our dataset is composed of two sets of data which were 
initially acquired from two Laser Range Finders (LRF). The 
data were acquired in the first level hall of IIT building in the 
NCSR Demokritos research institute on 30th July 2013 between 
2 pm and 5 pm, in an indoor location with an area of about 
6m×19m, with 4 hallways for access to other parts of the 
building, a staircase, 2 room entrances/exits, and 2 vending 
machines that are shown in Fig. 1. Also two different laser 
ranging finders (SICK and Hokuyo) were used to cover the 
hall, the blue dots and red dots showing the range that acquired 
by SICK laser and Hokuyo laser, respectively.

Fig. 1. the hall in which the data was acquired with detail. 

The model of the first LRF was a SICK LMS101 with 
0.25° angular resolution and 25 Hz frequency. For 270 degree 
range there are 1080 readings in millimeters. We used the 
"SICK engineering tool" that is given by the laser 
manufacturer. The capture data format is: 

Timestamp (millisecond accuracy) [semicolon] (column 2 
to 22 header) [semicolon] 1081 readings with semicolon 
between them (millimeter accuracy) [newline character]

The output was in CSV format. We imported the file in 
Matlab, removed columns 2 to 22 and saved for further use. 
The sample outputs of SICK laser are shown in Fig. 2, in 
Cartesian and Polar coordinates.  

The second LRF was a Hokuyo UTM-30lx with 0.25° 
angular resolution and 10 Hz frequency. For 180 degree range 
there are 720 readings in meters. The capture data format is: 

110



Time (the world "time") [space] Timestamp (millisecond 
accuracy) [space] 721 readings with spaces between them 
(meter accuracy) [newline character] 

The file was converted to the desired format using Matlab, 
i.e. useless data were removed and distances converted to mm. 

Fig. 3 shows the sample output of the Hokuyo laser in 
Cartesian and Polar coordinates. 

Fig. 2. The sample output of SICK laser. a) Cartesian coordinate. b) Polar 
coordinate. 

Fig. 3. The sample output of Hokuyo laser. a) Cartesian coordinates. b) Polar 
coordinates. 

Our data set after preprocessing and removing useless 
information consisted of 4 files: SICK1 and SICK2 were the 
first and the second part of the SICK laser output, respectively, 
and the Hokuyo data were in HOK1 and HOK2. 

The characteristics of these files collected in Table I. 

TABLE I. THE CHARACTERISTICS OF FOUR PREPROCESSED FILES. 

File name Time 
(millisecond)

Number of 
rows

Average time 
differences of rows

SICK1 7200063 171920 41.8803
SICK2 3600063 86498 41.6202
HOK1 6231290 50968 122.2589
HOK2 4049774 33107 122.3238

In Fig. 4 the spatial occupancy heat maps of two lasers are 
shown, indicating how frequently a position was occupied. 

IV. SPATIOTEMPORAL ALIGNMENT

One the most important preprocessing phases is 
spatiotemporal alignment, which is divided to two subsections: 
spatial aligning and temporal aligning. 

a

b
Fig. 4. Heat map of two lasers. a- SICK laser. b- Hokuyo laser. 

A. Spatial Alignment 
At first we need to model the background of two lasers. 

Since laser range measurements give us the distance to an 
object, we can use simple rules to classify background. We 
assume that the farthest known stationary object is part of the 
background. And then we update the mean and variance of 
background model with (1) and (2): 

1
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MeanMean nn
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2
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After extracting the background model for the two LRF, we 
can use ICP (Iterative Closest Point) to find the rotation and 
translation which are needed in order to perform the optimal 
spatial match between the two laser range images. In our case 
due to the structure of the environment and fixed LRF we just 
need a single rotation and translation vector. ICP is an 
algorithm employed to minimize the difference between two 
clouds of points. The algorithm is conceptually simple and is 
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commonly used in real-time. It iteratively revises the 
transformation needed to minimize the distance between the 
points of two raw scans. ICP has a rejection parameter to 
ignore the specified percent of worst match points. We get 
utilized a simple genetic algorithm (GA) to tune the rejection 
parameter of ICP. Fig. 5 shows the result of ICP-GA algorithm 
compare with ground truth. In our work we don’t use 
background updating due to the possibility that a human stays 
in one place for a long time: if we had used background 
updating, he would be considered as a part of background. 

a

b
Fig. 5. a- The matching result by using ICP-GA method b- Ground truth 

B. Temporal aligning 
For temporal alignment, we first convert our data to 

Cartesian coordinates. Then we try out multiple time delay 
choices and use a correlation metric to find the best 
correspondence. We start with 60 seconds and then 10 seconds 
to 1 millisecond, in a multi-resolution coarse to fine method.  
In highest level we compare two input stream in 60 second 
parts and find the best match then we continue it in 1 second 
and millisecond. We have found that the optimal temporal 
alignment for our case was at 25364 milliseconds. 

V. DETECTION AND TRACKING

A. Foreground detection 
The model of background that we calculated before, we are 

now utilizing to detect foreground. For each beam in polar 
coordinate if there is a significant difference between 
background model and current frame, we label it as foreground. 

After that we do some processing on the foreground result. At 
first we consider one or two points foreground as a noise and 
remove it. And the second one is if there is a foreground that is 
further than background, we consider as an error and remove. 

B. Merged foreground segmentation 
After that we merge the two LRF foreground points with 

calculated translation and rotation in a Cartesian coordinate. 
Mean shift clustering is then used to segment each leg of 
humans. The sample result of this stage are shown in Fig. 6.  

Fig. 6. The result of leg clustering 

Then, at the output of the previous stage, a restricted Mean 
shift clustering [20] is performed: i.e. we cluster the detected 
legs in order to consider each person as a separate cluster (with 
one or two legs). The sample output is shown in Fig 7. 

C. Tracking 
The Hungarian algorithm [21] used as matching algorithm 

between two consecutive frame cluster centroids. The 
Hungarian algorithm returns the best match between two 
consecutive frames. A maximum distance is also considered to 
remove matches upper than that. Based on two level clustering 
the direction of each match is also calculated. Based on these 
outputs the trajectories extracted. Then trajectories are then 
processed to close potential gaps, caused by short-duration 
disappearance of human legs, caused by occlusions or 
bandwidth-parameter mismatch. Fig. 8 shows the extracted 
trajectories for constrained periods of time: 
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Fig. 7. The result of human clustering (second clustering) 

Fig. 8. Two samples of extracted trajectories 

After that event analysis is performed on the extracted 
trajectories. Four different events were initially considered: 

E1) Human Entering 

 E2) Human Exiting 

E3) Human Walking  

 E4) Human Stopping 

Human entering is obtained based on two conditions: near 
the hall entry ports and the start point of trajectory. Human 
exiting is based on the closeness to the hall exit ports and 
should be the final point of trajectory. Human walking is 
extracted based on the moved distance in consecutive frame 
and the angle of the direction. And finally, the human stopping 
event is extracted by measuring the distance to the previous 
and next human locations 

In Table II the sample output of event detection is shown. 
The human angel in Table II is calculated based on positive 
direction of x-axis.  

TABLE II. SAMPLE OF DETECTED EVENTS FOR FRAME 40 TO 47. 

Number of 
Frame

Detected 
Human Detected Event Angel of 

Human

Frame 40
Human 1 Stop 0.2 π
Human 2 Walk -0.7 π
Human 3 Enter -

Frame 41
Human 1 Stop 0.7 π
Human 2 Walk -0.7 π
Human 3 Walk 0.1 π

Frame 42
Human 1 Walk 0.8 π
Human 2 Walk -0.8 π
Human 3 Walk -0.2 π

Frame 43
Human 1 Walk -0.9 π
Human 2 Walk -0.8 π
Human 3 Walk -0.4 π

Frame 44
Human 1 Walk 0.9 π
Human 2 Walk -0.8 π
Human 3 Stop -0.3 π

Frame 45
Human 1 Walk 0.9 π
Human 2 Stop 0.4 π
Human 3 Walk -0.2 π

Frame 46
Human 1 Walk -0.9 π
Human 2 Stop 0.3 π
Human 3 Walk -0.2 π

Frame 47
Human 1 Walk -0.7 π
Human 2 Stop 0.2 π
Human 3 Walk -0.2 π

VI. CONCLUSION 
 Robots are increasingly entering our daily lives, and 

cohabitating spaces with humans. However, towards safe and 
pleasant co-habitation, and towards interaction with single 
humans or groups of humans, robots should be able to navigate 
in ways that are human-friendly, and appropriate to human 
spatial interaction social norms, such as keeping personal 
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spaces. For that purpose, we have developed a special theory 
which extends path planning, which we call social path 
planning, which allows humans or groups as special obstacles 
or special goals in the path planner. In order to provide tuning 
for our simulation results, we have acquired a natural human 
interaction dataset, through measurements from multiple laser 
ranging sensors positioned at a cross-roads indoor space. 

 In this paper, we have described our system for 
deriving trajectories and events from these measurements, 
consisting of a novel processing chain, with spatial and 
temporal alignment algorithms for multiple laser sensors, as 
well as foreground detection, sensor data fusion, segmentation, 
tracking, two-legged position and pose estimation, and event 
detection stages. The methods presented here can be easily 
extended to larger spaces and applied for many other 
application domains beyond our main goal of learning optimal 
spatial interaction behaviors for human-robot interaction, 
towards our ultimate goal of daily collaboration and 
companionship with robots. 
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