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Abstract— There exist a multitude of multimedia sources 
nowadays where audiovisual material is accompanied by labels. 
In many cases, the semantic content of these labels is not 
referring to the totality of the material they accompany; but only 
to a certain subset of it. Consider, for example, labels that refer to 
objects that are part of an image; or, alternatively, labels that 
refer to an event that is part of a video. Knowledge of the subset 
of the material to which the labels refer to can be very useful; for 
example, it can inform us regarding the detectability of the entity 
under the presence of selective occlusions or noise; or, it can be 
used to help segment out the referent from the material itself – 
and, among many other uses, to optimize the recognition of the 
entities that the words refer to. Towards these goals, in this paper 
we will present a method which allows such semantic 
spatiotemporal localization: given multiple instances of the 
material, and accompanying labels, we will produce subsets of the 
material which are most informative regarding the label; and 
which can be thought of as the spatiotemporally localized 
grounding of the concept represented by the words. The method 
is illustrated for the specific case of spatially localizing labels 
describing human faces or parts and artifacts of them; such as 
“beard”, “glasses”, “male”, “old”. No prior information about 
the spatial locus of the referents of these words is given; the 
algorithm blindly identifies the regions that are most informative 
for each label, and can be readily applied to robot vision. 
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I.  INTRODUCTION 
With the ever-growing expansion of the internet as well as 

of electronic sensing devices (photo and video cameras, 
specialized imaging equipment etc.), a huge quantity of digital 
audiovisual material is being produced daily, in multiple forms, 
such as video clips, pictures, tomographic images, etc. Quite 
often, this material is being accompanied with words; labels 
describing it, and categorizing several aspects of it: For 
example, pictures uploaded to Picasa might have titles such as 
“Morning in Paris”, or a short videoclip in Youtube might be 
accompanied by the text “Maradona’s first goal”. One of the 
possible questions that one could ask thus follows: “Is it the 
case that the text as a whole or its component words that 
accompanies an audiovisual material can be localized spatially 
or spatiotemporally within the material itself?” One possible 
version of this question becomes: “Which spatial or 

spatiotemporal region of the material is most informative about 
the label we are trying to localize?”.  

For example – for the case of “Maradona’s goal” – which 
temporal fragment of the video clip, and which spatial locations 
within it contain the information required to be able to deduce 
that indeed “Maradona’s goal” as an event partakes in it? 
Potentially, the temporal instants around the final kick and the 
crossing of the goal posts could be most informative; and the 
spatial locations around the ball, the feet of Maradona, his face 
or any region that enables us to identify him, as well as the goal 
post and line would be most informative. Of course, 
informativity requires a concrete mathematization; and one 
could think about many semantic variations to the meaning of 
the term: discriminative informativity (among a given universe 
of other labels), representative informativity etc.  

There are many other cases, though, that a potential answer 
to the most informative spatiotemporal regions might not be 
that obvious as was the case in the “Maradona’s goal” clip. 
Consider our first example – the photo labeled “Morning in 
Paris”: which features of the photo would be most informative 
for the labels? If one is lucky, and a fragment of the Eiffel 
tower or the Pantheon is visible – as well as a morning sky or 
breakfast coffee – then the answer might be more 
straightforward. However, such highly discriminative features 
do not always exist; and the answer might not be so easy to 
find out through human intuition. Furthermore, and most 
importantly, what we are really after here is automatic 
spatiotemporal localization of meanings of words within 
audiovisual clips; and thus, although human intuition is useful 
in order to illustrate what we are after, it is not allowed to play 
any interventionist role within our method – which is required 
to be blind, i.e. fully automatic, without questioning or 
intervention of humans. 

 Now, imagine that indeed we have developed a method 
that satisfies the above requirements – an example of which we 
will illustrate in this paper. The important question that follows 
is: “But why could an answer to the question of which 
spatiotemporal regions are most informative for the label to be 
of any practical utility?”. There are multiple potential benefits: 
for example, such a method can inform us regarding the 
detectability of the entities described under the presence of 
selective occlusions or noise; such information could be very 
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useful towards many further goals – for example, towards 
customized selective cutting or compression of the material, 
while preserving recognizability. Furthermore, it can be used to 
help segment out the referent of the labels from the material 
itself, in order to be able to recompose them in different 
contexts – and, among many other uses, to optimize the 
recognition processes of the entities that the words refer to. 

Thus, there are many beneficial uses to a method that can 
indeed spatiotemporally localize the most informative regions 
for given labels. There are also multiple computational 
challenges, though: If one was to consider, for example, all sets 
of possible subsets of the original material, then intractability 
would have immediately have arisen. Furthermore, one could 
envision that a generic method tackling many different types of 
labels and original material would not be easy to devise – and 
thus, more domain-specific solutions would be required. 

In order to illustrate the method that we will present in this 
paper, we have selected a narrow yet clean and interesting 
domain: pictures of human faces, described by a set of labels – 
such as “old”, “male”, “asian”, “has moustache” and so on. 
Assuming minimal prior structure in the labels (mutual 
exclusivity which leads us to postulate categories), we will 
proceed by examining the distributional structure and mutual 
informativity of the categories. Then we will reach our main 
goal: we will connect the labels with the facial pictures and 
specific pixels of them – and thus, discover specific loci of the 
face, which have high informativeness for the terms “old”, 
“male”, “moustache” etc. After presenting our results, we will 
discuss potential extensions of our method, also towards other 
types of labels and audiovisual material, before finally 
providing a succinct yet informative conclusion to our work. 

II. RELATED WORK 
In the past, to our research, considerable research has taken 

place in a number of related areas: symbol grounding, 
grounding ontologies, spatial semantics, face recognition [1, 2]. 
However, nobody has directly tackled the question that we are 
asking here, that is blind semantic spatiotemporal localization, 
and more specifically apply it to the case of facial images and 
associated labels. Let us now consider the related areas where 
background work has been taking place in turn. 

When trying to tackle the problem of lexical semantics by 
positing a meaning space which is non-linguistic, or when 
trying to connect symbolic representations that arise within an 
artificial agent to the world, the so-called “Symbol Grounding” 
problem [3] becomes central. Following the original statement 
of the problem, which has also appeared in different variations 
in the past, arguably going all the way back to ancient 
philosophy, there has been a stream of literature trying to 
investigate various sides of this problem. For example, some of 
the questions that have been investigated include: “How can 
create computational models of symbol grounding that enable 
robots or other artificial systems to understand the semantics of 
certain subsets of natural language, and to be able to utilize 
them while being embedded in the physical world or while 
being fed with sensory traces arising from the physical world, 
such as photos or videos?”. Yet another question that has been 
investigated is: “How can groups of agents acquire grounded 

semantics, and how does meaning evolve in such a 
community?”. Some classic examples of work related to the 
first question include [4], [5], where the subset of language that 
is tackled is related to spatial descriptions, including spatial 
prepositions such as “on top of”, “inside”, “to the left” etc. 
Other important projects related to spatial semantics include 
[6], where verbal directions for navigating a wheelchair are 
translated to trajectories, and [7], where a large corpus of 
descriptions of navigation directions was acquired, in order to 
build relevant computational models. Moving beyond spatial 
semantics, there exist projects such as [8], where a small 
robotic camera learns the grounded meaning of shape and color 
terms through examples [9, 10]. Here through the “grounded 
situation mode” architecture a manipulator robot is able to 
achieve capabilities comparable to those required to pass the 
“Token Test”, a diagnostic test for detection of problems in the 
connection of words to sensory and motor abilities, which is 
administered to human children. Acquisition of computational 
models of grounded semantics through specially designed 
games is tackled in [11] for the case of massive online 
acquisition. Also, in [12, 13], the acquisition and processing of 
the world’s online quasi-complete audiovisual corpus including 
a large percentage of the first three years of the life of a child 
are described, with a special focus towards building 
empirically-driven grounded models of meaning acquisition 
during child development. 

 Moving over to the second question, concerning models of 
the evolution of grounded meaning in groups of agents, the 
work of [14] and [15] is highly relevant. Also, other related 
work includes [16]. Extensions of the symbol grounding 
problem towards sets of symbols which partake in ontologies, 
are often described under the term “grounded ontologies”. 
Beyond the connection of such nodes belonging to ontologies 
to their grounding domain, in this case, there also exist 
relations between such nodes with one another; for example, 
wordnet-like [17] meromorphic relations. A discussion of the 
relation of grounding to within-concept relational or similarity-
based models is given in [18]. 

III. METHODS AND RESULTS 
In order to illustrate the problem and the proposed method, 

we have chosen the domain of pictures containing human 
faces, and descriptions of a set of labels. The question to be 
investigated is: how can we spatially localize the words 
contained in the labels, i.e. which regions of the picture are 
most informative towards labeling the picture with a specific 
word? Our picture set contained 3993 128 x 128 pixel 8-bit 
gray scale photos of faces, partitioned into a training set (Tr) of 
1997 pictures, and a testing set (Te) of 1996 pictures. Each 
picture was accompanied with a verbal description containing a 
number of labels; in total, there were 19 words appearing as 
labels, namely L = {male, female, child, teen, adult, senior, 
white, black, asian, hispanic, other, serious, smiling, funny, 
moustache, beard, glasses, bandana, hat}. Not all images were 
of good quality; an example of two outliers that were part of 
the set is given in Fig. 1. 

The first picture in Fig. 1, has been labeled “smiling white 
male child”, while the second “serious adult white male 
moustache”. While the labels are correct, the first picture has 
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very extreme pose (head rotation), while the second contains a 
partial occlusion from the cigarette which hangs from the lips 
of the person depicted, and thus these pictures are outliers, 
which however often naturally arise within such datasets, and 
were thus not discarded in order to provide real-world results. 

Figure 1.  Two examples of outlier pictures from our dataset. 

Regarding pre-processing, a face mask was derived by 
thresholding the average face, calculated as the sum image of 
all the faces, and an averaged resized image at 32 x 32 pixels 
was utilized for the spatial localization process, which will be 
described later, after exploring the probabilistic structure and 
mutual predictively of the verbal labels. 

A. Investigating the Probabilistic Structure of the Labels 
A label co-occurrence matrix was created, which confirmed 

that one can postulate Nd = 9 mutually exclusive dimensions of 
labels (Table 1). 

TABLE I.  DIMENSIONS OF MUTUALLY EXCLUSIVE LABELS 

Dim Description Labels 

1 Gender L1 = {male,female} 
2 Age L2 = {child, teen, adult, senior} 
3 Race L3 = {white, black, asian, hispanic} 
4 Expression L4 = {serious, smiling, funny} 
5 Moustache L5 = {moustache, non-moustache} 
6 Beard L6 = {beard, non-beard} 
7 Glasses L7 = {glasses, non-glasses} 
8 Bandana L8 = {bandana, non-bandana} 
9 Bandana L9 = {hat, non-hat} 

 

Thus, the number of categories corresponding to each label 
dimension were Ncat = {2,4,5,3,2,2,2,2,2}. Considering all 
allowable combinations, one can see that they belong to a 
discrete and finite 9D space. The distribution though of labels 
in this space is far from uniform: while the total number of 
possible combinations is 3840 = 2x4x5x3x2x2x2x2x2, there 
exist only 95 actual combinations, i.e. 2.474% of all possible. 
Of course, some of them are combinations which are naturally 
highly improbable; for example “female” and “beard”. Others 
though, could be combinations which are possible, which 
however have not shown up in this particular dataset; for 
example, there were no “hispanic” and “children” in our 
dataset, which could well have existed in other datasets. Also, 
regarding the estimation of the probability of different label 

combinations, yet another consideration can be taken into 
account: that sometimes we expect pictures to be mislabeled; 
thus, when encountering a “female” and “beard” combination, 
this could also possibly be an indication of mislabeling. 
Finally, there is always the case of possible subjective inter-
annotator disagreement regarding the meaning of labels; thus, a 
turquoise object might be thought of as being “green” by some, 
and “blue” by others. 

Thus, if we know the hard constraints of the world in terms 
of allowable combinations of labels, and we are willing to 
hardcode them by hand, we can try to force the system not to 
take into account samples with incoherent label values. Else, 
we can let the system learn the allowable combinations based 
on what combinations it has encountered so far: thus, the 
system might attach a non-zero empirical prior to women with 
moustaches, which will eventually flatten out with a large 
enough training set. And, before having seen a hispanic child, it 
might assume that no such combination exists. However, this 
should not be treated as a “crisp” logical impossibility; but as a 
“soft” indication of low probability, that could well become 
non-zero on the basis of further observations of combinations – 
a situation which is similar to the treatment of “apax legomena” 
in traditional natural language processing. 

So far, we have commented upon the co-occurrence 
structure of the labels, their empirical probabilities, and their 
embedding into a multidimensional space on the basis of their 
mutual exclusivity. Now, before proceeding to the connection 
of the labels to the pictures and the spatial localization of their 
meaning, let us delve a little deeper, starting from the following 
question: Given the 3840 potential combinations of labels, and 
the 95 actual combinations, how should one cluster together 
these combinations to categories, in order to assign them to 
classifiers? The number of possible partitions (sets of covering 
non-overlapping subsets) is huge. Another relevant question is: 
Q1) At the smallest possible granularity of partitioning, what 
are the 10 most likely of the 95 actual combinations of labels 
that were encountered? Yet another important question is: Q2) 
Before we proceed to connecting the labels with the pictures, 
how much mutual predictivity exists between labels? Let us 
start with the first question. The top ten cases of the training 
set, together with their priors are shown in Table 2. 

TABLE II.  TOP 10 LABEL COMBINATIONS, ACCOUNTING FOR 75% 

Index Probability Combination 

1 15% female-adult-white-smiling 
2 12% male-adult-white-serious 

3 11% male-adult-white-smiling 

4 10% female-adult-white-serious 

5 7% male-adult-white-serious-withmoustache 

6 4% male-adult-white-smiling-withmoustache 

7 4% female-teen-white-smiling 

8 4% male-child-white-serious 

9 4% male-child-white-smiling 

10 3% male-teen-white-smiling 
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Notice that, by adding up the probabilities of the top 10 
combinations, we have covered almost 75% of all cases; and 
the rest (25%) is covered by the remaining 85 cases. Also, 
notice how commonsense stereotypes have arisen: smiling 
white female adults, and serious white male adults dominate, 
for this specific dataset. Fig.2 shows the full priors of the 
training set label combinations in descending order. 

 
Figure 2.  The Prior Probabilities of the Label Combinations of the Training 

Set, in Descending Order. 

We visualize the marginalized priors across the 9 main 
dimensions of the labels, for the cases of the training and the 
testing set separately (Fig. 3 and Fig. 4). 

 

Figure 3.  The Marginalized Priors of the Training Set. 

 

Figure 4. The Marginalized Priors of the Testing Set.

By observing Fig. 3 and Fig. 4, the following points come 
up: 

- Asymmetry: Every label except gender/expression has 
very imbalanced priors, much more for the last four (high 
entropy) 

- There is considerable difference of the marginalized priors 
between the train and test sets, and so they are somewhat 
mismatched for recognition, even at a very fundamental level. 
Taking into account the size of the samples (2K), this 
difference seems significant statistically. Other evidence might 
also signal this; for example, mean face and eigenvector 
differences, or mutual recognition rates etc. 

- By the trivial classification rule of just choosing the value 
having the largest prior of the training set, we can get on the 
testing set the following recognition accuracies across the 9 
dimensions: {0.6398, 0.8667, 0.8512, 0.5496, 0.7876, 0.9950, 
0.9960, 0.9960, 0.9900}. These are quite high percentages, and 
thus any results should be considered above this baseline. 

B. Mutual Predictivity between Labels 
Now, let us proceed to the second question that we had set 

out, namely Q2: How much mutual predictivity exists between 
labels? I.e. if we know that one label is “male”, what can we 
say regarding the probability of other labels?  

Let us start by considering pairs of labels, and their 
marginalized priors, so we can gain some insight in combining 
outputs of pairs of classifiers (instead of going to the full 9D 
problem). For example, just by detecting zeros in the 2D priors, 
we can easily through some lines of code automatically 
generate statements of the form (with all the caveats given 
above regarding zero empirical priors): 

Facts I know about the relation of_gender_with_beard: 
-> Noone_with_female_gender_also_has_a_beard!- 

 

Such statements might be worth exploiting, if for example 
we have a highly robust moustache classifier correcting a 
mediocre gender decision and vice versa, or even in more 
balanced cases given not highly overlapping errors. This 
argument can go a bit further (considering pairs again), and the 
mutual information of their priors shows such “inbalanced” 
cases that can easily be exploited (again depending on their 
individual classifier performance and matching). For pairs, we 
get the result in Fig. 5 where the upper figure denotes color 
coded log of mutual, for pairs of labels. The lower figure 
denotes the thresh holding of the above. 

 

Figure 5.  Mutual Information of Priors. 
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Figure 6.  KL, % on Train, % on Test, Area in Pixels, Arranged by Subset Index (0-23K), for the Case of Label 6 (Moustache). 

 

 

 

Figure 7.  Recognition Percentage of Simple Classifier on the Training Set (Above) and on the Testing Set (Below). 
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It is thus apparent which pairs of features offer useful 
information about each other: (1,5)=(gender, moustache) has 
the highest score, but also (expression, gender) etc. Now, let us 
move over to our main question: how can we spatially localize 
the meaning of the labels? 

C. Semantic Spatial Localization of the Labels 
In simple words, here we are attempting to answer the 

following question: for a specific label (for example, 
moustache), which pixels (most probably forming areas) of the 
image contain the crucial information for recognition? Or, else, 
can this thing labelled “moustache” be localised somewhere in 
the face, based on the training data? As discussed in the 
introduction, there are multiple benefits of obtaining an answer 
to this question. 

One of the first issues that needs to be addressed, when 
attempting an answer, has to do with the set of possible regions 
that can serve as a potential answer. What are we looking for? 
Any possible subset of pixels of the image? The number of 
possible subsets is huge; for the 32 x 32 image, we have 2 to 
the power of 1024 subsets; and one cannot expect to be able to 
exhaustively search in all of them. Thus, we chose a subset of 
all possible subsets: namely, those that are rectangular, with 
sides belonging to {4,8,12,16,20,24,28,32}. Later, in the 
second stage of the process that we will describe, we can also 
derive softer regions with more complicated shapes; but 
initially we work with rectangular regions.  

Then, following the set of subsets choice, one needs to 
choose a criterion for selecting among the subsets, the one that 
contains enough crucial information, while discarding the 
larger subsets. We have chosen two such criteria: the first is 
Kullback-Leibler distance (KL distance), and the second is the 
recognition percentage of a fast-and-simple classifier based on 
fisher discriminants. 

For the first criterion, a symmetrized version (arithmetic 
mean) of the KL distance was used, divided by the number of 
pixels in the subset, to counterbalance for large numbers of 
pixels. Also, the resistor-average KL [19] was tried out, but for 
the gaussian case we used, the later it is equivalent. The 
implementation of the KL distance was problematic: early 
histogram-based approaches suffered from zeros, and while 
some quick fixes for the 1D case were successful, but these 
didn’t generalize well to the multi-D case. Thus, to get a quick 
working fix, we estimated means and covariance matrices and 
used the KL formula for gaussians [19]. However, there were 
severe numerical problems in this case too, due to the often ill-
conditioned inversion of covariances. For the second criterion, 
our simple classifier consisted of a 1D fisher vector projection 
(discriminating label with maximum prior with the union of the 
rest), followed by gaussian fitting (based on empirical sigma 
and mu for each class), empirical priors, and the associated 
quadratic decision boundary. 

Now let us move on to results. There exist 23K rectangular 
regions with sides belonging to {4,8,12,16,20,24,28,32} in the 
32 x 32 pixel image. If we arrange them linearly, and calculate: 
KL divergence, recognition percentage on the training set (i.e. 
without generalization), recognition percentage on testing set 
(i.e. true percentage with generalization), and subset area in 

pixels, we get diagrams in Fig. 6. By observing Fig. 6, one can 
see that: 

- Large-scale and small-scale periodicities due to the 
looping of rectangle side sizes 

- There is certainly a relation between KL and recognition 
percentage, of course even more so on the train set. However, 
this relation is not always monotonic; there exist pairs of 
increasing KL values with decreasing percentages. This was to 
be expected however, as KL is related to asymptotic 
performance, furthermore under other idealizations. 

In general, recognition performance of the simple classifier 
on the train set was found to be a more reliable predictor of the 
performance of more complicated classifiers on the test set than 
KL, although further experimentation and quantitative 
justification would be required for a stronger statement 
regarding this observation. Even if the original subset areas 
should be multiples of 16 (4 x 4), because the regions of the 
subsets were furthermore masked by the almost-elliptical face 
mask, all possible areas between one and the total mask size 
emerged, with a spiky decreasing histogram of areas. If we 
now arrange the subsets by area, we can find the statistics of 
the criteria as a function of subset size (Fig. 7) where statistics 
is considered as a function of feature set size (red = min and 
max, blue = mean, green = one sigma boundaries), y-axis 
denotes ABOVE MAX. PRIORS. Points to notice in Fig. 7: 
First, we do get satisfactory separation in almost all labels – 
moustache seems best, and race worst. Second, there are labels 
for which adequate information can be found even in small 
areas of the picture (i.e. are highly localised); moustache is 
such a prime example, and also expression. It gets to 90% of its 
best percentage with a 32-pixel subset, and probably even 
smaller (if we allowed all possible rectangle side sizes we 
would know). i.e.: 
'---> LABEL=moustache' 
Best KL values [0.50821,4.4972], firstmin@=1, firstmax@=216, but we still 
get over the acceptable=4.0475, with an area as small as =211 
Best TE perc [0.78758,0.93387], firstmin@=1, firstmax@=89, but we still get 
over the acceptable=0.91924, with an area as small as =16 
 

- There are other labels where we continue to get more 
useful information as the subset size increases, and we should 
probably use the whole picture if we can, such as gender. i.e.: 
'---> LABEL=gender' 
Best KL values [0.12138,0.96421], firstmin@=2, firstmax@=9, but we still 
get over the acceptable=0.86779, with an area as small as =9 
Best TE perc [0.65731,0.77054], firstmin@=1, firstmax@=130, but we still 
get over the acceptable=0.75746, withan area as small as =90 
 

- Of course, highly localized labels have more variance for 
a fixed size k for small sizes.  

In order to provide a clearer picture of what is happening 
across the 9 dimensions of labels, we can create a visualization 
of the best feature sets, as well as those at 90% of maximum 
performance but with minimum size (Fig. 8). Notice that 
indeed the highly localized features require small sets, and also 
notice how the inherent symmetry of the human face functions: 
in many cases, only half the area is required. We certainly get 
what we expected for moustache, expression, glasses, bandana 
and hat. 

130



 

Figure 8.  Best Feature Sets and Satisfactory Sets (90% of Best Performance). 

 

Figure 9.  Relative Frequency of Pixel Belonging to Best Performing Sets for Size k. 

 

Now, in order to be able to view not only regions, but 
also a distribution of informational importance of different 
regions, as it pertains to their frequency of inclusion in 
highly informative subsets for a specific label, we can try the 
following visualization. We plot the number of times a pixel 
belongs to a best performing (for size k) feature set over the 
number of times it belongs to all sets created (Fig. 9). Here, 
times pixel belonged to a best performing subset for an area 
k. k=1:maxk over times pixel belonged to a feature subset 
that was evaluated, where “best performing” is according to 
recognition percentage on train set by the simple classifier. 
There are several points worth noting in Fig. 9. 

Semantic localization is now evident. We have indeed 
found out which part of the image is more informative 
towards the labels EXPRESSION, MOUSTACHE, 
GLASSES and HAT. For results with inadequate rec. 
performance: the BANDANA result is spurious, due to the 
fact that two of the supposedly bandanas are mufflers worn 
on the neck, and the beard result is very general due to the 
suspicious non-labeling of beards (when a moustache 
existed,). 

Thus, through the process that we have described, we 
have successfully localized the most important areas for each 
label, and thus can justify selecting these. And we have also 
roughly grounded the meaning of words as “moustache” in 
spatial regions of the pictures. In summary, we have taken 
the following steps: we started by investigating the 
probabilistic co-occurrence structure of the labels, and 
embedding them into a nine-dimensional space. Then, after 
discovering hard constraints and visualizing mutual 
predictivity of the labels, we moved on to our main question: 
how are the labels connected to spatial regions of the 
pictures? We chose a set of possible subsets for region 
(rectangular regions with specific side lengths), and two 
metrics for informativeness of the subset towards 
recognizing the category of the label (KL-divergence as well 
as simple classifier performance), and after these choices 
were made we asked: how is the informational importance of 
different regions distributed, as it pertains to their frequency 
of inclusion in highly informative subsets for a specific 
label? To answer this question, we plotted the number of 
times a pixel belongs to a best performing (for size k) feature 
set over the number of times it belongs to all sets created, in 

131



Fig. 8: which provides a clear visualization of the automatic 
spatial semantic localization of the labels, thus achieving the 
goal that we had set out for. 

IV. DISCUSSION OF FUTURE STEPS 
There exist multiple avenues for extension of our system 

and concept. First, we plan to apply our method for other 
domains, beyond labels of faces, also to audiovisual material 
where we will also be able to provide not only spatial but 
also temporal localization. Second, we plan to investigate 
alternative choices for set of subsets to be investigated, as 
well as generative mechanisms which adjust sets of subsets 
on the fly; for example, by appropriate adaptation of 
sequential forward selection and other such methods [20]. 

Finally, we plan to chain the resulting output of our 
method to task-specific compression and recognition 
subsystems, in order to investigate the potential gains to be 
made by adaptively providing particular importance to the 
most informative task-related spatiotemporal regions, which 
our method produces given a set of labeled material. 

V. CONCLUSION 
Large quantities of labeled audiovisual material that exist 

today, either in the internet or in other sources. Knowledge 
of the subset of the material to which the labels refer to can 
be very useful; for example, it can inform us regarding the 
detectability of the entity under the presence of selective 
occlusions or noise; or, it can be used to help segment out the 
referent from the material itself, and among many other uses, 
to optimize recognition of the entities that the words refer to.  

Motivated by the above state of affairs, in this paper we 
presented a method which allows such semantic 
spatiotemporal localization: given multiple instances of the 
material, and accompanying labels, our method produces 
subsets of the material which are most informative regarding 
the label; and which can be thought of as the 
spatiotemporally localized grounding of the concept 
represented by the words. A detailed illustration of the 
internals and the details of our method was given through the 
specific case of spatially localizing labels describing human 
faces or parts and artifacts of them; such as “beard”, 
“glasses”, “male”, “old” and so on. No prior information 
regarding the spatial locus of the referents of these words is 
needed for our method; the algorithm blindly identifies the 
regions that are most informative for each label.  

While presenting our example, multiple relevant 
questions were asked, and computational answers were 
provided – for example, regarding the probabilistic structure 
of the labels and their mutual informativity. Our method was 
able to finally deliver a clear visualization of the most 
informative loci regarding our labels, and thus to give a clear 
indication of its power. Finally, as discussed, multiple 
avenues for extension exist; and the basic principles of 
semantic spatiotemporal localization can easily extend 
beyond the case of facial regions which we have illustrated 
in detail in this paper, and can be thus successfully applied to 
many other interesting domains. 
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