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Abstract—The Human-Robot Cloud has previously been in-
troduced as a framework for the creation of distributed, on-
demand, reconfigurable human-machine cognitive systems[1].
These systems are made up of sensing, processing, and actuation
components that are not limited to a specific type of applica-
tion and potentially can be extended to multiple domains and
may cover spatially smaller or larger areas. In this paper, we
revisit the Human-Robot Cloud architecture and present its pilot
deployment on the campus of NCSR Demokritos, a research
institution in Greece. In particular, our concrete deployment aims
to be demonstrated in three specific application scenarios; namely,
Human-Aware Smart Buildings with Energy Optimization, Security
and Surveillance, and Smart Tour Guide System. In this paper,
we present in detail an example implementation of the Smart
Buildings scenario: a real-world application with immediate ben-
efits in energy optimization and energy savings. Environmentally
sensitive issues, such as the ground-up development of energy
efficient buildings or reducing the environmental impact of the
existing infrastructure, has received much attention in the past.
However, the traditionally offered solutions are central, non-
transferable to other infrastructure, non-scalable and suffer from
single points of failure. On the contrary, in this work, which
is based on a specialization of the generic Human-Robot Cloud
architecture, we attempt to move beyond the industrially available
solutions to meet the requirements for scalable, reconfigurable
and redistributable sensory, processing, and actuation units
within buildings. A set of cameras, laser range finders, and other
sensors, together with a number of processing and actuation
elements, including face detection, expression recognition, and
people trackers, are transformed to a prototypical reconfigurable
distributed extended cognitive system, which can support multiple
applications in the future.

I. INTRODUCTION

Traditional artificial cognitive systems (for example, intelli-
gent robots) share a number of common limitations. First, they
are usually made up only of machine components; humans are
only playing the role of user or supervisor. And yet, there are
tasks in which the current state of the art of AI has much
worse performance or is more expensive than humans: thus,
it would be highly beneficial to have a systematic way of
creating systems with both human and machine components,
possibly with remote non-expert humans providing snippets
of some seconds of their capacities in real-time. Second, their
components are specific and dedicated to one and only one
system, and are often underutilized for significant fractions of
their lifetime. Third, there is no inherent support for robust,
fault-tolerant operation, and if a new component becomes
available, with better performance and/or cheaper cost, one

cannot easily replace the old component. Fourth, and quite
importantly in terms of their economics, they are viewed as
a resource that needs to be developed and owned, not as a
utility; i.e. not as a service provided on demand [2].

Motivated by the above state of affairs, the Human-
Robot Cloud (CLIC) framework was presented in [1], [2].
CLIC is a framework for constructing cognitive systems that
overcomes the above mentioned limitations. With the four-
layer software architecture of CLIC, specific yet extensible
mechanisms enable the creation and operation of distributed
cognitive systems that fulfill the following desiderata: First,
that are distributed yet situated, interacting with the physical
world though sensing and actuation services, and that are also
combining services provided by humans as well as services
implemented by machines. Second, that are made up of
components that are time-shared and re-usable across systems.
Third, that provide increased robustness through self-repair
mechanisms. Fourth, that are constructed and reconstructed
on the fly, with components that dynamically enter and exit
the system, while the system is in operation, on the basis
of availability, pricing, and need. Quite importantly, fifth, the
cognitive systems created and operated by CLIC do not need
to be owned and can be provided on demand, as a utility –– thus
transforming human-machine situated intelligence to a service,
and opening up numerous interesting research directions and
application opportunities.

A similar framework is proposed by “Synaisthisi”, a Greek-
European funded project that aims to bridge the gap between
the research area of reliable sensing technologies, optimal
distribution, and network management with the information
processing researchers abstracting from the sensing technolo-
gies and focusing on the data processing models, decision
support and event recognition systems. “Synaisthisi” is an
ongoing project with a strong focus in delivering applied,
demonstrable frameworks and solutions for smart buildings
applications. Towards the full implementation of “Synaisthisi”,
a pilot deployment of the basics of the framework is taking
place in the campus of NCSR Demokritos. In this deployment,
several sensing, processing, and actuation components are
being created. The initial deployment aims to be able to be dy-
namically reconfigured in order to support three applications:
Human-Aware Smart Buildings with Energy Optimization,
Security and Surveillance, and Smart Tour Guide System. In
this paper, we present an initial implementation of the Smart
Buildings for Energy Optimization application.
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In this paper, we build on the need to improve the en-
ergy efficiency of buildings through leveraging the power of
independent, distributed components that can be fused and be
easily reconfigured in multiple applications to address different
needs, e.g., security and surveillance applications or guided
tours. Section II discusses the basic concepts behind the CLIC
framework and a related application in the research area of
smart buildings. In Section III, we discuss the requirements
for the messaging architecture that will be responsible for the
robust communication between the components. Section IV
contributes to the technical specification of our system with
details that would allow potential users to design and to deploy
similar systems in the future. Section V is dedicated to the
processing units, in particular the people counting application
from video sequences, that were specifically developed for
this application. Finally, Section VI concludes this work and
discusses our future directions.

II. OVERVIEW AND BASIC CONCEPTS

Mavridis et al.[2] introduced a framework that contributes
towards improving the above-described state of affairs. In
particular questions were asked such as: How can the cognitive
systems of the future exhibit improved characteristics? Can
they consist also of human components, given that for some
cases they exhibit better performance and/or are more readily
available than electronic elements? For example: humans are
much better in performing activity recognition as compared
to the state-of-the art automated systems (better performance).
Another example is that of a human observer next to a broken
traffic camera, who can be useful acting as a sensor that reports
traffic conditions (availability). Based on this the following
questions are raised up: Can the cognitive systems of the future
include distributed components that are time-shared and re-
used for various systems, and also enable much higher robust-
ness and flexibility? For example why should the surveillance
cameras of a city be dedicated only to surveillance, and why
can they not be reused for other purposes too? Can we even
reach a stage, where one is able to offer situated cognitive
systems as an on-demand service, on the basis of the type of
the requests? All of this seems like quite distant from the state
of the art of today –– but is it?

An interesting experiment trying to address these needs
was the DARPA 2009 Network Challenge, often referred to
as the Ten Red Balloons competition. During this Challenge,
ten large red balloons were placed in locations around the
United States, with their location unknown to the participating
teams. The goal was to create a system that is able to locate
the balloons in minimum time, without restricting the use of
humans in the system. A team from the MIT Media Lab
won the challenge: through an ingenious scheme thousands
of non-expert humans were recruited lending some seconds
of their eyes to the resulting system; this information was
propagated and combined, in order for the system to determine
the location of the balloons [3]. One can view the system
that was created as a massive distributed cognitive system:
with sensing (vision) provided by human components, pattern
recognition (red balloon recognition) provided by humans
too, and information fusion as well as propagation provided
by electronic components. Notice that in this system the
components are human as well as machine, they are distant
(spread over a large geographical area). Furthermore, the

human components are not dedicated to the system (i.e. the
humans that spent 10 seconds of their time looking around for
a balloon are also using their eyes and brains for other tasks),
i.e. their sensing as well as cognition apparatus is time-shared
and re-used. Finally, there is a large degree of robustness to
the system as false-reports can be crossed-out of the system
through the special algorithms used and through the inherent
redundancy in sensing resources.

Another similar example is Von Ahn’s [4] CAPTCHA-
breaker scheme. CAPTCHAs are often used to prevent spam
email programs and other bots from creating thousands of
email accounts. They are usually strings of letters and numbers,
with character sets that contain geometric distortions and
occlusions. The characters in the CAPTCHAs are very easy
for humans to recognize; however, they are quite difficult
for machines, given the state of the art of Optical Charac-
ter Recognition. A solution towards breaking CAPTCHAs,
involves finding non-expert humans online, and incentivizing
them, so that they break the CAPTCHA (by recognizing the
characters) with the answer collected by the spam mailer
program, which opens the accounts right away. The humans
effectively lend some seconds to the system to perform the
cognitive service of character recognition for it, incentivized
by illegal downloads that the system offers in return for their
services. In essence, a large distributed cognitive system is
effectively created consisting of human as well as machine
components, which dynamically enter and exit the system to
achieve superior results that would have been impossible by
either alone.

Finally, we consider a third recent development, the cloud
computing paradigm. Traditionally, computation required own-
ership of resources: computers, storage space, and software.
With cloud computing, computation is viewed as a “utility”.
In a similar sense with modern power and water networks,
users of the cloud do not need to own the means of pro-
duction or distribution (i.e. power generators, water sources
and distribution networks): they just connect to the cloud, and
time-share reusable distant distributed computation, storage,
and code resources, in a transparent fashion (not knowing
the whereabouts or the specifics of them), and with high
robustness.

The aim of CLIC is to provide a conceptual framework
to integrate ideas, constructs, architectures and techniques
from human-machine cognitive systems, artificially intelligent
agents and services of the kind presented in cloud computing
to build human-machine cognitive and intelligent systems on
demand. The contribution of the proposed framework is the
identification and conceptual definition of four layers that need
to be available for building cognitive systems applications.

A. Related Work

The area of Smart Building applications is quite wide,
however, there has been little research on the redistributable
and reconfigurable aspects of our proposed system. The most
closely related work in the field is the Building Operating
System Services (BOSS) [5] but we are not aware of other
research that is trying to address the same issues within a
complete framework that includes generic sensing, processing
and actuation units.
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Dawson et al. [5] recently presented BOSS, i.e., a set
of operating system services that offer the ground on which
users are able to quickly develop applications for managing
large commercial buildings. BOSS proposes and implements
an architecture for development of robust and portable ap-
plications. Similar to our proposed work, the applications
are portable in the sense that the user has access to a set
of services and APIs without interfering with the low level
hardware issues of sensors and actuators. However, the most
interesting contribution of this work is the introduction of
an approximate query language that specifies the relationship
of components and not specific devices. Furthermore, they
introduce a reasoning system about failure cases and present
a time series service that treats historical and real-time data to
be treated uniformly. The latter functionally is freely available
from ROS in our proposed work and the user is able to log
and replay the logs as if they were real-time. Furthermore, our
work is extensible towards full reconfigurability.

As attractive as the BOSS framework may be, there is a
lack of the human element in either the sensing, processing
or actuation units. BOSS briefly mentions that the human
feedback could be used in the system. However, in our work,
we have a clear understanding of the human element either as a
sensing, processing, or actuation unit as this system has derived
from the Human-Robot Cloud. Our application may have not
reached the same level of maturity with BOSS, however, our
testbed is ready for the deployment of a more complex system
that will include human and robotic elements within its units.

III. REQUIREMENTS FOR THE MOM

A major constraint for such applications is either the
use of an established system or the bespoke development
of a Message Oriented Middleware (MOM). The MOM will
support redistributable and reconfigurable sensing, processing
and actuation units through a generic middleware that will be
responsible for the intercommunication of these systems, in
order to achieve the required level of control for any kind
of buildings and applications. “Synaisthisi” project [6] has
defined the minimum requirements for any system that would
support the easy deployment of our system in buildings of any
type, either commercial or private housing, and of any scale.
These requirements are iterated below.

1) The independent components are distributed and unaware
of the internal specifics of their lateral sensing, pro-
cessing and actuation network. Hence, the MOM must
support message passing amongst the components and,
more specifically support messages with custom types to
facilitate any type of data that may be the output of the
sensors. For example, float values, videos from cameras
or point clouds should all be supported by the system.

2) The nodes of the system must be easily connected within
a network by assigning them dynamic IP addresses.

3) User needs may include blocking as well as non-blocking
API calls to each component of the system.

4) Support for numerous message passing channels on each
IP address

5) Ease of implementation of buffering schemes
6) Data throughput, delay times, and robustness which are

adequate both for low-data rate non-time-critical mes-
saging (such as temperature measurements), as well as

high-data rate (such as video) and highly-time-critical
measurements (for example, laser ranging data tied to a
real-time motor-control loop

7) Support for components written in various programming
languages (C++, Java, Python and more) and running
in various operating systems (Windows and Linux, also
support for iDevices or PDAs useful)

8) Availability of a large base of existing components sup-
porting sensing, actuation, and processing services, in-
cluding cameras, RGB-D sensors such as the Kinect,
Laser Range Finders, but also various kinds of motors
and output devices

9) Existence of message-passing wrappers for important
application-oriented processing libraries such as OpenCV
and Point-Cloud-Library

10) Ease of implementation of time-stamps and logging func-
tions

Multiple MOM systems have been proposed in the litera-
ture as well as other robotics-oriented middlewares [7]. This
work is specifically interested in the smooth integration of
current and future robotic systems to actively participate in
the architecture. Within the area of robotics a well estab-
lished system, ROS: the Robot Operating System, satisfies
the desiderata and furthermore allows the straightforward
integration of robotic components for future applications; e.g.,
robotic tour guides in museums. ROS in its official page
is promoted as “a set of software libraries and tools that
help you build robot applications”, however, ROS offers a lot
more. ROS is ideal for distributed computing systems as its
subsystems are converted to nodes that belong to a virtual
computation graph. Nodes are highly reconfigurable to meet
the needs of the user or the developer and extensive tools
are available to satisfy most needs. ROS offers a publish-
subscribe messaging framework that is generic and allows
various types of custom messages to be communicated within
its network. Furthermore, research groups around the world
publicly share their ROS nodes implementing state-of-the-art
algorithms that would serve as processing units in our system,
e.g., computer vision algorithms. Last but not least, ROS offers
an active ecosystem with strong interaction between its users
through social media, on-line communities, fora and ROSCon,
the annual ROS Developer Conference.

IV. SMART BUILDINGS: A CASE STUDY

Investing in energy efficiency is a compelling act for
private and public institutions that will face increasing energy
demands in the near future. In particular, Architecture 2030,
a non-profit organization, reports that the US buildings in
general are responsible for approximately 75% of the total US
energy consumption every year. Considering that the average
consumption difference in green buildings is about 30% less
than the conventional buildings, it highlights the heavy impact
of any improvements that would have to the world energy
consumption [8]. A different manifestation of transforming a
building to green is improving its energy efficiency through
the installation of sensing, processing, and actuation units
in the building. Recently, Dawson et al. [5] emphasized the
importance of reusing existing components of traditionally
built buildings, e.g., ventilation systems, fire alarms, heating
and cooling systems, in an interoperable way to extend the
existing infrastructure.
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Fig. 1. Typical classes of Sensing, Processing, and Actuation components
that can be reconfigured to support all three application scenarios or other
complex domains.

The National Centre for Scientific Research, NCSR
Demokritos, is the biggest research centre in Greece. It cur-
rently employs more than 1000 researchers, engineers, tech-
nicians and administrative personnel. The number of people
along with the various activities, e.g., frequent meetings and
workshops, that take place within the research centre create
the perfect environment for a case study of our system. It is
also a great testbed since the occupants are familiar with the
latest technologies and would welcome such a system in their
daily life. Finally, we expect the deployment of our system
will have immediate return in terms of savings given the scale
of the campus. For our pilot experiment we have used a single
room to demonstrate its capabilities before scaling it up to
the building and eventually the campus. Below we present the
sensing, processing and actuation units that were used, while
the general framework can be seen in Figure 1.

A. Sensing Units

1) Hardware: In the proposed testing environment, all
sensing units are attached to a Raspberry Pi (Pi) computer. The
low cost Pi converts any sensor to a network sensor enabling
it to perform basic information processing as well as run ROS
natively. ROS on the Raspberry Pi is not currently officially
supported, however, it is possible to port it and deploy it with
ease as an image to other Pis. Essentially, the Pi becomes
one or more portable ROS nodes with the ability to process
sensory input from different types of sensors connected to it.
In the current implementation a single Pi is responsible for
all the processing of our sensors, i.e., 6 sensors providing
a total of 11 independent measurements. The current setup
provides redundancy by having two temperature/humidity and
two luminosity sensors connected to the same Pi. In future
implementations, these sensors will be connected to multiple
Pis (ROS nodes) and will be deployed on different places
within the same room, or different rooms within a building.
The sensor list and measurements provided include an RHT03
(or DHT22) Temperature/Humidity sensor, an AM2315 Tem-
perature/Humidity sensor, two TSL2561 Luminosity sensors

(Broadband, Lux, IR), and two Clever BWBL-2B05M Door
Passage Detectors.

The RHT03 sensor offers 0-100% humidity readings with
2-5% accuracy and -40 to 125◦C temperature readings with
±0.5◦C accuracy. The sampling rate is limited to no more than
0.5Hz. The AM2315 sensor offers 0-100% humidity readings
with 2% accuracy and -40 to 125◦C temperature readings with
±0.1◦C accuracy. The TSL2561 sensor operates at 400kHz
(I2C Fast-mode) and automatically rejects 50/60Hz Lighting
Ripple. The BWBL-2B05M door passage detector is composed
of an IR transmitter and receiver that fires an alarm when
interrupted, i.e., activates a relay switch (40ms trigger response
time) that is monitored by the Pi. Two sets of sensors are
carefully positioned in parallel to each other at a distance of
about 40cm, to eliminate the possibility of cross-illumination.
Two sensors are deployed in order to register whether a person
is walking in or out of a room based on the firing time
difference. Hence, it is possible to update the count of people
at any moment in the room, however, not accurately due to
physical limitations of the relay switches or multiple people
passing simultaneously. All sensors are not plug-and-play and
custom circuitry was designed to interface them with the Pi.

2) Software: A required step for each sensor is to create
a ROS wrapper/driver to make the sensory readings available
across the ROS computational graph. Each sensor is individ-
ually interfaced with ROS and is published as a ROS topic.
ROS wrappers were created over the python2 drivers of the
sensors, and also a UDP connection was used in one case due
to a driver incompatibility. Other sensors have also been used
in our application such as a webcam, a Kinect sensor, and an
LMS100 laser range finder, which are directly supported by
ROS Hydro. For the Kinect, the “openni” package was used.

3) ROS Network: In order for such a system to be redis-
tributable and reconfigurable the sensors have to be arranged
as multiple ROS nodes, either on Pis, desktop PCs, laptops,
or other ROS-equipped systems. In the pilot setup, a master
node is running roscore, which acts as a DNS server for all
other nodes. The remaining machines in the network have
access to a list of published ROS topics. Any user or agent in
the network may subscribe to any number of ROS topics to
further use the sensory information. An example of a central
application fusing all of the incoming sensor data is presented
later. A shortcoming of the current implementation is that any
failure in the master node will result in unexpected behavior
in the system. Hence, relying on a single machine running
“roscore” introduces a single-point of failure. In the future,
we plan to resolve this issue with an extension where roscore
will be watchdogged and redundant agents will be initiated on
demand on different machines that will take over the role of
“roscore”.

4) Application: A demo application is demonstrated in
Figure 2. A requirement of the application is to remain
ROS independent, therefore, additional ROS de-wrappers were
developed. ROS de-wrappers are also ROS nodes that convert
incoming ROS messages into traditional data types. Hence,
ROS is only responsible for the data communication. The
application reads the sensor data, processes it according to
previously setup rules following international standards, and
fires actuator responses to the processed signals. Unfortunately,
due to the lack of actuation elements we were not able to
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demonstrate this aspect, however, we present the pilot by
printing the corresponding actions as messages on display.

V. PROCESSING UNITS: COUNTING PEOPLE FROM VIDEO

We propose a fast real-time method for automatic detection
and tracking of multiple people in an indoor environment
(closed room), from video captured by a monocular fixed
uncalibrated camera.

Visual detection and tracking of people is a well-known
computer vision problem that is notoriously challenging due
to the variations in human appearance, body poses and viewing
angles. However, because real-time performance is important
to our system, and because we only need to solve this problem
for the constrained indoor environment of a small closed room
(hence small number of people with restricted movement), we
have opted for a compromise between algorithmic simplicity
and accuracy (false detection rate) in the design of our method
[9], [10], [11], [12].

Our method combines three sources of information in
a single image: motion, appearance (color), and the results
of state-of-the-art fast person detectors. Specifically, multiple
person detectors (of the full body, face, head & shoulders,
and lower body) are applied independently in each frame,
and their results are used to update the state of the currently
tracked targets. In order to handle cases of missing person
detections, we also rely on motion information (in the form
of blobs detected via adaptive background modelling and
subtraction) and color histogram-based mean shift tracking
[13]. The method hence consists of three main processing
modules, namely 1) Person detection 2) Motion detection
(or change detection) 3) Object tracking. The implementation
was done in C++ using the open-source OpenCV library and
currently runs at approximately 10fps.

A. Person Detection Module

The goal of the Person Detection Module is to detect as
many people as possible in a given single image, e.g., see
Figure 3, independently of other images in the video. Five dif-
ferent detectors are applied in parallel for this task : 1) Frontal
face detector, 2) Profile face detector, 3) Head and shoulders
detector, 4) Lower-body detector, and 5) Full-body detector.
The first four detectors are based on the method by Viola
and Jones [14], which uses Haar-like filters (wavelets) and
multiple cascades of boosted classifiers. The full-body detector
is based on the method by Dalal and Triggs [15], which uses a
Histogram of Oriented Gradient (HOG) descriptor and a linear
Support Vector Machine (SVM) classifier.

Obviously this parallel detectors approach is more robust
than using a single detector, since people are often sitting or
occluded (by other people or objects in the scene), as well as
because these detectors are not perfectly accurate; in fact they
typically suffer from high false alarm rate.

We subsequently merge the results of these different de-
tectors by clustering of the bounding boxes (rectangles) into
disjoint groups with similar sizes and similar locations. This is
a crucial step in our processing pipeline as it greatly reduces
the complexity of the subsequent tracking step. The output of
this module hence consists of a set of person detections.

Fig. 3. Single frame of the people counting processing unit in the main room
that our system was deployed.

B. Motion Detection

The goal here is to detect motion regions in an image
frame. Since a static camera is assumed, we use an adaptive
mixture-of-Gaussians (MOG) background model for this task.
A set of motion regions (or blobs) is obtained in each frame
by first subtracting the frame from the background model, then
applying some elementary morphological operations (erosion
and dilation) in order to reduce noise in the binary image, and
finally doing a connected components analysis to separate the
different motion regions.

C. Object Tracking

Given the set of person detections and blob regions from
the previous two modules, the goal here is to integrate this
information to update the state of the current set of tracked
targets (people in the scene). Obviously, this is a classic data
association (correspondence) problem, wherein we seek a best
match between new detections and tracked targets. A heuristic
algorithm is used that consists of the following steps :

1) Predict the new image location of each tracked target
based on a simple constant velocity motion model. The
velocity is estimated every 20 frames using a batch least
squares fitting.

2) Determine best matching between new detected persons
and current tracked targets based on simple bounding
box proximity. This step results in 4 cases: 1-1 matches,
unmatched targets, unmatched detections, many-many
matches.

3) Handle each unmatched target by trying to match it with a
motion blob, and if that fails, then use mean shift tracking
based on a simple appearance model of the person’s upper
body part. The latter model is obtained by extracting
a 2-dimensional colour histogram using the a* and b*
components of the LAB color space.

4) Handle each unmatched detected person by creating a new
tracked target for it.

Note that we currently do not handle many-many matches
since they are ambiguous cases that require additional cues to
be resolved effectively.

VI. CONCLUSION

We have introduced the pilot deployment of a Smart Build-
ings application in the campus of NCSR Demokritos. Initially,
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Fig. 2. The demo application subscribes to the available ROS topics within its network and provides an intuitive interface. The system is able to follow
simple rule-based code to force actuation suggestions that a human may follow, or in the future autonomously take actions that will save energy or offer a more
comfortable working and living environment.

we briefly discussed the CLIC framework and “Synaisthisi”
project and discussed the requirements for a Message Oriented
Middleware that would allow their utilization in a realis-
tic environment. In the current deployment, several sensing,
processing, and implied actuation components were created
focusing on the energy saving aspect of smart buildings.
However, it has been discussed how it is possible to reconfigure
the nodes into a different future application, such as Security
and Surveillance, or a Smart Tour Guide System. This work is
focused mostly on the lower level architecture of the system
and the actual implementation offering valuable information to
potential users that want to deploy ROS as part of their Smart
Buildings applications. In the future, we plan to offer a higher
level application that will offer a more challenging testbed,
however, this paper is an important step towards that direction
as it covers important aspects of the actual implementation.
In particular, we plan to extend the sensing capacity with
microphone arrays and the integration of all the sensing units
in a complex application that fuses them to facilitate higher
levels of inference.
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