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Abstract—Joystick-based teleoperation is a dominant method
for remotely controlling various types of robots, such as ex-
cavators, cranes, and space telerobotics. Our ultimate goal is
to create effective methods for training and assessing human
operators of joystick-controlled robots. Towards that goal, in this
paper we present an extensive study consisting of 18 experimental
subjects controlling a simulated robot, using either no feedback or
auditory feedback. Multiple observables were recorded, including
not only joystick and robot angles and timings, but also subjective
measures of difficulty, personality and usability data, and auto-
mated analysis of facial expressions and blink rate of the subjects.
Our initial results indicate that: First, that the subjective difficulty
of teleoperation with auditory feedback has smaller variance as
compared to teleoperation without feedback, and second, that the
subjective difficulty of a task is linearly related with the logarithm
of task completion time. We conclude with a forward-looking
discussion including future steps.

I. INTRODUCTION

Teleoperation is a field with its beginnings in the second
half of the twentieth century, which has proved to be invaluable
in a number of application domains, where autonomy is either
above the state-of-the-art, prohibitively expensive, or where
ethical and legal aspects necessitate the existence of a human
operator. Quite importantly, teleoperation usually covers cases
where the physical existence of a human operator in the task
space is either very dangerous, impractical or impossible, such
as radioactive environments, space robotics, and deep space
exploration, or where the quick physical transfer of an expert
is not preferable or feasible, such as medical telesurgery.

Although a wealth of research regarding teleoperation
already exists, a significant amount of it deals with systems-
theory aspects of it, and especially the compensation and
effects of delay in the control loop, e.g. [1]. Furthermore,
although multiple human-machine interfaces have been ex-
plored in teleoperation, including exotic modalities such as
brain-computer interfacing [2], still an important percentage
of the interfaces rely on joysticks, especially in industrial
applications. However, despite the amount of research in the
aforementioned areas, few frameworks exist towards quan-
tifying human operator performance in teleoperation, such
as [3], in which a probabilistic framework aids towards the
decomposition of the contributions of correspondence choice
[4] and feedback. However, the effects of easy-to-implement

feedback mechanisms across various modalities for the case
of joystick teleoperation, and most importantly, the basic
mechanisms of human operator training, have not yet been
adequately studied.

Thus, towards our ultimate goal of creating effective meth-
ods for training and assessing human operators of joystick-
controlled robots, in this paper we present an extensive study
consisting of 18 experimental subjects controlling a simulated
robot, using either no feedback or auditory feedback. An
important novelty of our study is concerned with the fact
that a rich set of multiple observables was recorded towards
analysis and evaluation of our main research questions. These
include not only joystick and robot angles and timings, but
also subjective measures of difficulty, personality and usability
data, and automated analysis of facial expressions and blink
rate of the subjects.

The main initial research questions that we asked are, in
layman’s terms, the following: First, how does auditory feed-
back effect performance and perceived subjective difficulty?
And second, and most importantly, what does the perceived
difficulty that the subjects experience correlate with?

In order to answer our initial research questions and poten-
tial future questions, a carefully designed set of experiments
was carried out. Our results provide answers to our main
research questions, and also open up exciting avenues for
further analysis and investigation.

We will proceed as follows: First, background will be
provided for a number of related areas, followed by a detailed
exposition of our materials and methods used. Subsequently,
results will be presented, followed by a forward-looking dis-
cussion, and culminating to our conclusions.

II. BACKGROUND

Joysticks are often used as input devices to remotely
operate a machine, or a robot, in master/slave configura-
tion. Although they have been conceived in the 60s, still
they are massively employed in industrial applications. Their
supremacy over other input devices (such as hand-based track-
ing systems [5], datagloves [6] or teaching boxes) is due to the
fact that joysticks are reliable, ergonomic (operator’s elbows
lay on armrests), cost-affordable, ideal for rugged applications
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and, to a certain extent, intuitive to operate. Joysticks are used
as human-machine interfaces in many commercial applica-
tions such as excavators, cranes, forklifts [7], electric-powered
wheelchairs [8], robot telemanipulation and micromanipulation
[9].

Teleoperating a manipulator, or a slave device, by means
of one or more joysticks can be implemented with different
control strategies [10]:

- Direct Rate control: the manipulator is controlled in
such a way that there is a direct correspondence between
each joystick DoF and each manipulator joint velocity. In this
way the joystick angular position is interpreted as a velocity
command for the manipulator joint. Therefore velocity can
vary linearly with respect to the joystick position. Typically,
this approach is used in excavators or cranes, since the joystick
position directly commands the hydraulic valve opening. In
fact, there exists a linear relationship between the manipulator
joint speed and the valve opening.

- Resolved Rate Control: the manipulator is controlled in
such a way that there is a direct correspondence between
each joystick DoF and spatial DoF of the manipulator. Spatial
DoFs are referenced to a convenient coordinate frame. This
mapping is intuitive but requires the measurement of the
manipulator joint values (feedback) for the interpolation of the
joints motions. For this reason, it is implemented mainly in
robotic telemanipulation rather than in excavators or cranes.

- Position Control: the mapping is between each joystick
DoF and each manipulator joint position. Also in this case the
slave manipulator is provided with a controller to perform a
joint position control, where the input signal is given by the
joystick position.

- Resolved Position Control: the mapping is between each
joystick DoF and spatial DoFs of the manipulator.

The main drawback related to non-resolved controls is
due to the fact that mapping between the DoFs of the slave
manipulator and the DoFs of joysticks are counterintuitive.
This is because the inverse kinematic calculation, from the
DoFs of the manipulator to the DoFs of the joystick, is
mentally demanding.

The choice of the DoFs mapping affects the overall per-
formance of the manipulator-operator interaction as it has
been shown in previous researches. Previous research, Bock et
al. [11] compared different mappings in a 2-D cursor tracking
task. In a case, the 2 DoF of the cursor were mapped on
a single two-axis joystick. In one case, they were mapped
on a two single-axis joysticks, with different orientations
(rotated or in a egocentric frame). As expected, results showed
that responses with single-axis joysticks were less accurate,
especially when the axes where not oriented egocentrically.

Operation performance of joysticks depends not only on the
mapping, but also on many geometric and control parameters,
such as length of the joystick handle, control gain [12], and
joystick stiffness [13].

Because of the counterintuitive and demanding cognitive
mapping processes, candidate users of heavy equipments re-
quire long-time training sessions to acquire the skills needed to
operate in a safe and efficient way. Training can be performed

on the field, an approach that raises several safety and cost
issues.

For these reasons in the last decades several training sim-
ulators, especially in the field of heavy equipment (excavators
and construction equipment), have been developed. Simulators
can be classified according to the level of virtual tools they
make use of. Typically, the basic configuration of VR(Virtual
Reality)-simulators consists of a screen where the virtual
equipment is represented and a couple of joysticks [14]–[16].
In more realistic simulators, sound effects [17], virtual reality
immersive systems [18] and haptic feedback (provided to the
joysticks as well as to the seat [19]) are provided. There exist
also AR(Augmented Reality)-simulators where the subject to
be trained interacts with a real worksite populated with virtual
and real tools [20].

Although several commercial simulators have been pro-
duced, as stated by Su et al., a “proof of the training principles
for efficient utilization of a virtual training systems, especially
for operating heavy construction equipment, is still not found
in the published literature” [21].

The training is usually based on trial-and-error sessions
where a skilled instructor supervises and gives verbal instruc-
tions. Concurred visual and haptic (intended as concurrent
augmented haptic) feedback cues are not provided during the
training in order to prompt the subjects.

To the best of our knowledge, multiple different kinds
of concurrent training cues (audio, haptic or visual) have
never been compared as far as teleoperation tasks by means
of joysticks are concerned, and most importantly, no clear
pattern regarding the relation of reported subjective perceived
difficulty of tasks to an absolute and easily observable mea-
surement has been yet derived. However, as we shall see in
this paper, a strong relation exists, which we will empirically
justify and discuss.

III. MATERIALS AND METHODS

The main overall aim of our case study is to increase our
knowledge on how humans learn to control physical devices
such as excavators and robots through special interfaces, such
as joysticks and whole body interfaces, as well as to explore
the role of feedback on learner’s performance during training
through teleoperation applications. In general, feedback is
regarded as a critical variable for skill acquisition and is
broadly defined as any kind of sensory information related to
a response or movement [22]. In our case study we designed
an experimental procedure consisting of five sub-experiments.
The first four were conducted within a simulation environment,
while for the fifth the participants used a physical robotic arm.
During the first experiment, the participants were not given a
form of feedback during the task execution. The other three
groups were given visual, auditory and vibrotactile (haptic)
feedback respectively. Here, we report on the initial results
of the first two experiments, i.e., auditory feedback and no
feedback on the simulated robot.

A. Simulated teleoperation with a virtual manipulator

The subject, sitting in front of a screen, operates two 4DoFs
joysticks (Fig. 1).
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Fig. 1. A subject performing the simulated telerobotics application using the
two joysticks

The joystick axis position values are used to control a
virtual 4 DoFs planar manipulator provided with a gripper
(Fig. 2, left side). The manipulator is controlled in direct rate
control mode. The mapping between the speed of the manipu-
lator joint values α1, α2, α3, cd and the joystick position values
J1, J2, J3, J4 is given as follows

α̇1

α̇2

α̇3

ċd

 =

 0 −1 0 0
−1 0 0 0
0 0 0 −1
0 0 −1 0


J1J2J3
J4

 (1)

The virtual environment has been developed in Matlab
using Psychtoolbox [23]. Psychtoolbox is an open source
Matlab/Octave library that provides a simple programming
interface to vision and neuroscience researchers. Psychtoolbox
is optimized towards developing simulators or computational
experiments that need to present accurately controlled visual
and auditory stimuli, e.g., for Psychophysics and Psychology
experiments. Joystick position values and joints values are
saved on a log (a log file for each task) file with a sampling
rate of 10Hz. The task consists in moving the robot in such a
way to grab an oriented square appearing on the screen (Fig. 2,
right top side). The task is complete when the gripper is almost
aligned with the red edges of the target square, namely when

‖Pr −Ps‖+ χ |α1 + α2 + α3 − θs| < ε, (2)

where Pr is the current position of the end-effector including
the length cd of the clamp, Ps is the target position of the
square including the length l of this particular task, αi is the
joint angle of link i, αs is the angle of the target location.
Fig. 2 presents visually the aforementioned parameters. Finally,
ε is an error threshold and χ is a parameter introduced to
homogenize the error.

B. Feedback Design

The auditory feedback is composed of 30 different tone
frequencies starting from low pitch for error actions when the
gripper is closer to the setpoint. The pitch of the auditory
feedback is increased as the gripper moves away from the
target.

Fig. 2. 4 DoFs simulated manipulator (left side), target square (right, top
side) and Joystick values (right, down side))

C. Experimental Procedure

- Participants: Data were collected from a total of 18
participant learners during the International Research-Centered
Summer School in Cognitive Systems and Interactive Robotics,
Data and Content Analysis (http://irss.iit.demokritos.gr/), from
11th to 26th of July 2014, at the Institute of Informatics and
Telecommunications (IIT) laboratory at NCSR “Demokritos”.
There were 5 females (27,8%) and 13 males (72,2%). The av-
erage age of students was 27.3 (SD = 5.6). The academic level
of the participants was mixed, varying from undergraduate to
associate professor. The number of gamers and non-gamers
participants was the same (9 gamers, 9 non-gamers).

- Procedure: Initially we asked the participants to fill in
the Big Five Inventory questionnaire [24]. The Big Five factor
model of personality is one conceptualization of personality
that has been increasingly studied and validated in the scientific
literature [25]–[27]. According to the Big Five model of
personality, these factors are: a) extraversion, b) agreeableness,
c) conscientiousness, d) neuroticism and e) openness. The
BFI has 44 items to measure personality traits. The five
point Likert-type scale with 1 = strongly disagree to 5 =
strongly agree was used to measure each item. According to
the personality traits analysis for each participant, we formed
groups of 9 participants each, for the different phases of our
experiment. We wanted each group to have similar distribution
of personalities with the other groups (equivalent/ balanced
groups). We also wanted the number of females in each group
to be the same (if possible).

During each phase of the experiment, each group was given
9 tasks of scaled difficulty (3 easy, 3 medium, 3 hard) to
complete. Before considering the difficulty of each task, we
asked 5 other randomly selected people to try to accomplish 12
tasks and tell us their perceptions of difficulty for each one of
them. For each task the user was responsible to move the robot
in a configuration that would grab the oriented square with
the gripper on the screen. The required robot configuration to
achieve the task relies on the pose of the target square. Hence,
an easy task would require for example only a single joint
to rotate from the initial configuration, however, other tasks
might require all joints to reach a non-obvious configuration
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to appropriately approach and orient with the square. By
uniformly distributing the squares on the workspace for the 12
tasks, our aim was to cover as much as possible the required
effort put from each subject for each task, while keeping the
experiment interesting and avoiding frustration to first-time
users. Based on these perceptions and the respective times to
complete the tasks, we initially estimated the actual difficulty
of the tasks. Three of the initial tasks were excluded from
the final procedure because they were considered as outliers.
Furthermore, before the participants ran through the tasks, we
provided them a short briefing. The briefing would supply
them with the necessary instructions and guidance throughout
the procedure, by explaining shortly the goals and the overall
process.

During the simulation activity, we provided to the par-
ticipants a sequence of tasks and asked them to guide a
simplified simulation of an excavator. In each task, the goal
was to grip the square target object that appears on the screen
in different initial positions. The excavator was made up of
three links plus a gripper. In our case, the simulated robot
had four joints that could be controlled: three rotational for
each one of the excavator’s links, and one for the gripper. In
order to complete the tasks, the participants should take care
of the orientation of the gripper: the three red edges of the
square target object should be aligned with the gripper surface,
as shown in the diagram (Fig. 2). To control the simulated
robot, the participants were given two joysticks. They had
to figure out on their own which was the mapping between
the joystick and the excavator movements. During the exper-
iments, the tasks’ order of appearance was not randomized,
but pre-determined according to a cycling iteration protocol in
order to maintain the balanced design of the procedure. After
completing all tasks, the participants from the feedback sub-
groups were asked 5 questions regarding their perceptions of
the effectiveness of feedback. All questions were in Likert-
scale, with 1=“strongly disagree” to 7=“strongly agree”. For
the purpose of our case study, we also implemented an overall
usability evaluation questionnaire. The questionnaire consisted
of 28 questions and was build upon the CBAAM, proposed in
[28]. The questions were selected to measure the following
categories: a) ease of learning, b) perceived ease of use, c)
perceived playfulness, d) perceived usefulness, e) satisfaction.
Each one of these categories included different items/factors.
To measure these items, we used the seven point Likert-type
scale with 1=“strongly disagree” to 7=“strongly agree” [28].
The simulation environment was built on a MacBook using
Matlab, while for the questionnaires we used googleforms.

Facial Expressions and Blink Rate: A front facing color
camera with resolution 1280 x 1024 at 27 frames per second
was used to record a video of each subject’s facial expressions
while they sat the experiment. Each video was processed
using the Fraunhofer SHORE facial analysis system [29] and
intermediate data was obtained on the subject’s emotional
state as portrayed through their facial expressions for each
trial and experiment. The data comes in the form of zero to
100% ratings for four dimensions of human operator affect:
happiness, sadness, anger, and surprise. Each video was also
processed to obtain blink detection as a measurement for each
user, trial, and experiment. This was chosen as blink rate is
known to be correlated with user engagement in a task [30].

IV. RESULTS

Our initial results are concerned with answers to the
following two research questions: First, how does auditory
feedback effect performance and subjective reported difficulty?
And second, and most importantly, what does the reported
difficulty that the subjects experience correlate with?

Let us examine these questions in turn:

A. Auditory Feedback vs. No Feedback

First, we examined the mean task times per subject, for the
cases of auditory feedback versus no feedback. Fig. 3 shows
the boxplots of mean times, which had the following statistics:
No Feedback (mean = 144sec, median = 133sec, std = 76sec),
Auditory Feedback (mean = 121sec, median = 101sec, std =
61sec). Although it seems that auditory feedback decreases
the mean, the median, as well as the variance of time, this
cannot be supported with statistical significance from our em-
pirical data, thus not further supporting [31]. A Kolmogorov-
Smirnov test verified normality for both no-feedback as well
as auditory-feedback total times per subject, but two-sample t-
test for means (P=0.49), Wilcoxon-rank for medians (P=0.86),
as well as F-tests (P=0.55) for equal variance all failed to give
statistically significant results.
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Fig. 3. Mean task time per subject depending on feedback

Then, we examined the mean subjective reported difficulty
per subject, for the cases of auditory feedback versus no
feedback. Fig. 4 shows the boxplots of means of subjective
reported difficulties, which had the following statistics: No
Feedback (mean = 3.125, std = 0.605), Auditory Feedback
(mean = 2.815, std = 0.272). However, here we can indeed sup-
port with statistical significance that the variance of subjective
reported difficulty decreases with auditory feedback. Initially,
a Kolmogorov-Smirnov test verified normality for both no-
feedback as well as auditory-feedback reported difficulties. The
two sample F-test is used to determine whether the variance
of two populations are equal. In this experiment, the F-test
proved that the variance for the case of auditory feedback is
less (with a ratio estimate of around 2.2) at the 5% significance
level with P<0.05 (0.0366).
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Fig. 4. Mean subjective reported difficulty per subject depending on feedback

B. Subjective Difficulty vs. Task Time

Fig. 5 shows the times required to complete each task
versus the perceived difficulty of the task in a semilogarithmic
plot. A linear regression gives the fitting line: log10(time) =
0.27 × difficulty + 1.12, with an R-squared value of 0.53.
Higher-order polynomials give a very small increase in the
explanation of variance (0.56 for quadratic and cubic), and
thus the linear fit provides a very good approximation without
overfitting. Most importantly, there are similarities with the
Weber––Fechner law: subjective the perceived intensity is re-
lated to the logarithm of the objective magnitude. In our case,
the subjective perceived difficulty is related to the logarithm
of the total time required to finish the task.
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Fig. 5. Semilogarithmic plot of task time versus subjective perceived difficulty

V. DISCUSSION

In addition to the initial results presented above, our rich
acquired dataset affords the examination of numerous other
interesting research questions: First, examination of the other
two types of feedback that were implemented, i.e. visual
and haptic. Second, comparison of the simulator results with
the physical robot results. Third, proposal and evaluation of
highly-predictive measures of future performance and operator
competence. Fourth, the taxonimization of different types of
operator errors during teleoperation. Fifth, a quantification and
examination of the distribution of the four error types across

subjects, experience, and difficulty is underway. Attempts
towards automatic recognition of errors, and provision of more
multi-faceted feedback are in progress. Sixth, there are a
lot of interesting patterns that have started to appear upon
our initial examination of the relation between teloperation
performance, personality and emotion, as assessed by the
big-five questionnaire and the fraunhofer SHORE automated
facial expression analyzer. Seventh, and most important, we
are currently devising algorithms for adaptive personalization
of training sequences towards maximizing performance while
minimizing training time. And the above are just an initial set
of potential directions that are already afforded by the collected
data, towards creating effective training and assessment of
joystick-teleoperated robots.

VI. CONCLUSION

Towards our ultimate goal of creating effective methods for
training and assessing human operators of joystick-controlled
robots, in this paper we investigated the following two initial
questions, in laymans terms: First, how does auditory feedback
effect performance and subjective reported difficulty? And
second, and most importantly, what does the reported difficulty
that the subjects experience correlate with?

Towards answering these questions, we designed an ex-
tensive study consisting of 45 experimental subjects on both
simulated as well as physical robots, using three different
types of feedback: visual, auditory, and haptic. In this paper
we report on initial results based on analysis of the first
18 subjects, belonging to auditory feedback and no feedback
subgroups. Multiple observables were recorded, including not
only joystick and robot angles and timings, but also subjective
measures of difficulty, personality and usability data, and
automated analysis of facial expressions (Fig. 6) and blink
rate of the subjects.

Our initial results support the following answers to the
research questions that we posed: First, that auditory feedback
cannot yet be proven on the basis of our data to be more
effective than no feedback for teleoperation learning. However,
the variance of subjective reported difficulty when auditory
feedback exists can be proven to be less with statistical
significance, as compared to the variance of subjective re-
ported difficulty when there is no feedback. Second, and quite
importantly, it was found that the subjective difficulty of a
task is linearly related with the logarithm of total task time.
Finally, we provided a concrete progression of future work
in a forward-looking discussion. Thus, through all the above,
we have provided a contribution towards our ultimate goal of
effectively training and assessing human operators of joystick-
controlled robots, supporting a wealth of applications across a
range of domains, and thus bringing telerobotics closer to our
everyday life for the benefit of humanity.
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