
Information Sciences 322 (2015) 20–30
Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier .com/locate / ins
QTC3D: Extending the qualitative trajectory calculus to three
dimensions
http://dx.doi.org/10.1016/j.ins.2015.06.002
0020-0255/� 2015 The Authors. Published by Elsevier Inc.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

⇑ Corresponding author.
E-mail address: nbellotto@lincoln.ac.uk (N. Bellotto).

1 In this classic psychological experiment, a movie is shown to experimental subjects, where a set of simple geometrical figures (triangles, points, a
move in trajectories with respect to one another. However, when humans are asked to report what they have seen, they directly offer anthropoce
arguably, biocentric) interpretations of what they have seen: the triangles are reported as having affective state (angry, afraid, etc.), their relative mo
interpreted as intentional acts (chasing, confronting, hiding) and so on. All of this rich information is included not in the form of the figures, but ju
relative trajectories of them.
Nikolaos Mavridis a, Nicola Bellotto b,⇑, Konstantinos Iliopoulos a, Nico Van de Weghe c

a Institute of Informatics and Telecommunication, NCSR Demokritos, Greece
b School of Computer Science, University of Lincoln, United Kingdom
c Department of Geography, Ghent University, Belgium

a r t i c l e i n f o a b s t r a c t
Article history:
Received 12 February 2014
Received in revised form 5 March 2015
Accepted 5 June 2015
Available online 16 June 2015

Keywords:
Qualitative representations
Qualitative Trajectory Calculus (QTC)
Moving objects
Spatio-temporal modeling
Spatial interactions between agents (humans, animals, or machines) carry information of
high value to human or electronic observers. However, not all the information contained in
a pair of continuous trajectories is important and thus the need for qualitative descriptions
of interaction trajectories arises. The Qualitative Trajectory Calculus (QTC) (Van de Weghe,
2004) is a promising development towards this goal. Numerous variants of QTC have been
proposed in the past and QTC has been applied towards analyzing various interaction
domains. However, an inherent limitation of those QTC variations that deal with lateral
movements is that they are limited to two-dimensional motion; therefore, complex
three-dimensional interactions, such as those occurring between flying planes or birds, can-
not be captured. Towards that purpose, in this paper QTC3D is presented: a novel qualitative
trajectory calculus that can deal with full three-dimensional interactions. QTC3D is based on
transformations of the Frenet–Serret frames accompanying the trajectories of the moving
objects. Apart from the theoretical exposition, including definition and properties, as well
as computational aspects, we also present an application of QTC3D towards modeling bird
flight. Thus, the power of QTC is now extended to the full dimensionality of physical space,
enabling succinct yet rich representations of spatial interactions between agents.
� 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

As the epitome of the philosophy of Heraclitus (544-484BC) states: ‘‘All entities move and nothing remains still’’. Thus change,
and especially motion (which is the primary sensory manifestation of change), are central elements in almost all philosophical–
conceptual systems. The simplest conception of motion is absolute motion, which describes the movement of an entity with
respect to a stationary frame of reference. However, moving beyond the absolute motion of an individual entity, one of the most
important species of motion is relative motion between two entities, which forms an essential aspect of special interaction, for
the case of objects construed as agents (humans, animals, or machines). Such spatial interactions between agents carry infor-
mation of high value to human observers, as exemplified by the high-level interpretations and judgments that humans make
when watching the Heider and Simmel movie [14],1 or by the rich semantic content of moving point abstractions of
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real-world events and everyday interaction scenes (e.g. reading gender from gait, [21]). Furthermore, such spatial interactions
between agents carry invaluable information not only to human observers, but increasingly also to electronic sensing systems,
for example those overlooking or assisting with crowd flows [32], or traffic management [5]. In recent years, geographical infor-
mation scientists have intensively explored the relationships between multiple moving point objects. Research in this area has pre-
dominantly focused on the comparison of quantitative characteristics of trajectories such as azimuth, velocity, turning angle,
acceleration, and sinuosity. An extensive overview is given in Long and Nelson [19].

However, when observing the relative motion between two agents, not all the information contained in a pair of contin-
uous trajectories is always important. For example, one might not really need the exact distance between two agents, but
only the trend of change of relative distance or pose between them. Thus, the need for qualitative descriptions of interaction
trajectories arises, abstracting unnecessarily complex complete quantitative representations. An adaptive representation of
spatial trajectories of pairs or groups of objects, which can retain exactly as much qualitative information as needed for each
application, can also be used for learning and reproducing interactive behaviors.

The Qualitative Trajectory Calculus (QTC), devised by Van de Weghe [26], is a promising development towards this goal. A
number of variants of QTC have been proposed in the past, including versions enabling the application of QTC to networks
[8], and shapes [31]. However, an inherent limitation of the existing variations of QTC considering lateral movements (e.g.
QTC Double Cross) is that they can only deal with two-dimensional motion. Therefore, complex three-dimensional interac-
tions, such as those occurring between flying planes or birds, cannot be adequately captured. Towards such purpose, in this
paper we propose QTC3D: the first extension of QTC that can specifically deal with three-dimensional interactions.

Our representation is based on qualitative descriptions of transformations of the Frenet–Serret frames [17] accompanying
the trajectories of the moving objects. In more detail, the two Frenet–Serret frames corresponding to the two moving points
consist of the tangent, normal, and binormal vectors. The relative motion between the two frames is modeled by the transfor-
mation that maps one frame to the other. Apart from the continuous model, the proper application of QTC3D in real-world sam-
pled trajectories also requires proper discretization, which is also devised and presented. Finally, an example application
towards qualitative modeling of the flight of a flock of birds is provided, illustrating the elegance and power of QTC3D for a com-
pact representation of complex three-dimensional interactions while ignoring unnecessary detail and exposing only essential
information.

In this paper, we will proceed in Section 2 by providing a discussion of relevant existing literature, followed in Section 3
by a theoretical explanation including the definition of QTC3D and its fundamental properties. Then, in Section 4, we will dis-
cuss computational aspects, and provide a version of QTC3D that can deal with discrete-time sampled trajectories. In
Section 5, we present an illustrative example of QTC3D towards modeling bird flight. Finally, we will close with a discussion,
including future steps, followed by a conclusion. Overall, and most importantly, through this paper, the power of QTC will be
extended to the full dimensionality of physical space, enabling succinct yet rich representations of spatial interactions
between agents.
2. Background

Qualitative temporal and spatial reasoning about movement behavior has increasingly gained momentum over the last
two decades, as scholars have begun to recognize the importance of qualitative reasoning in describing the common-sense
background knowledge on which our human perspective on physical movements is based [11,12]. In particular, various
qualitative temporal calculi, such as the Interval Calculus [2] and the Semi Interval Calculus [10], have been proposed.
Along this line, a well-matured body of research has been developed regarding mereotopological relationships, as exempli-
fied by the RCC-calculus [25] and the 9-intersection model [9].

Until recently however, there was a lack of academic work on calculi to represent trajectories of disjoint objects, hampering
applications where most objects are disconnected, such as moving vehicles, pedestrians and animals. To address this shortcom-
ing, Van de Weghe [26] introduced the Qualitative Trajectory Calculus (QTC) to describe the relative motion of disconnected mov-
ing objects, providing an answer for many trajectory applications. As with other qualitative calculi, the theoretical framework of
QTC has been thoroughly investigated by, among others, composition-tables [28] and conceptual neighborhood diagrams [29].
This has been furthered by an implementation of QTC that is capable of describing real-world movements, both at time stamps
(by QTCrelations) and during longer periods (by QTCanimations, being a sequence of QTCrelations) [7]. Such animations can represent
all kinds of real-world interactions, including an overtake event [27] and prey–predator interactions [30].

Recently, QTC has been applied to analyze and implement human–robot spatial interactions. In the preliminary work of
Bellotto [3], a version of QTC dealing only with the linear distance between two agents (i.e. QTC Basic = QTCB) was adopted to
describe and implement simple spatial interactions, in which a robot and a human approached or moved away from each
other. In Hanheide et al. [13], the human trajectory induced by a particular robot motion behavior in narrow spaces was ana-
lyzed using sequences of QTC states that included also lateral movements (i.e. QTC Double Cross = QTCC). Combinations of
QTCB and QTCC sequences were then exploited in Bellotto et al. [4] to design and implement human–robot spatial interac-
tions with varying degrees of resolution, depending on the scenario and the desired robot’s behavior. In all these cases, how-
ever, only 2D trajectories have been considered. The reason behind this is simple: in two dimensions, a unique line
interconnecting the two moving points can be drawn, which divides the plane in two clearly defined regions. In three dimen-
sions, a unique plane cannot be constructed between two points, and therefore no such clear partition exists.
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Some previous work has considered qualitative spatial representations and reasoning on 3D regions [1]. Also, an attempt
has been made on the orientation of point objects, but only with respect to external reference systems [23,24]. Furthermore,
the complexity of the proposed models could limit their implementation and actual application to real-world problems.
Thus, we need to resort to a novel constraint for QTC, in order to be able to capture the richness of interactions of a pair
of three dimensional moving point objects.

3. Definition and properties

3.1. A brief overview of QTC2D

Let us start by providing a brief summary of the essentials of the traditional two-dimensional Qualitative Trajectory
Calculus [26]. The properties that QTC2D can retain are all the following ones, or specific subsets of them:

� Q1: Distance constraint for the first object, conventionally named k:

� means that it is approaching the second object, named l,
+ means that it is moving further away, and
0 means that its distance remains steady.

� Q2: Distance constraint, similar to Q1 but with the objects k and l interchanged.
� Q3: Speed constraint; because of the dual nature we only need one such constraint:
� means that object k is slower than l,
+ means that k is faster than l, and
0 means that they move with the same speed.

� Q4: Side constraint for k with respect to vector kl:

� means that k is moving to the left of the line,
+ means that k is moving to the right of the line, and
0 means that it moves along the line.

� Q5: Side constraint, similar to Q4 but with the roles of k and l interchanged.
� Q6: Angle constraint: define as hk the minimum absolute angle (MAA) between the velocity vector vk of k and vector kl,

and hl the equivalent for the velocity v l of l. Then we obtain

� if hk < hl, i.e. k is moving at a smaller angle with respect to kl than l,
+if hk > hl, i.e. the inverse of the above,
0 for all other cases, i.e. k and l are moving at the same angle with respect to kl.

Note that the constraint Q6 does not hold any particular information regarding the alignment of the two agents. Such
qualitative insight can only be extracted by observing other constraints or combinations of them.

In order to help the readers better understand the above concepts, we provide the trajectories of two Moving Point
Objects (MPOs) in Fig. 1 and the corresponding values of the constraints in Table 1.

By deciding to retain different subsets of the above constraints, we can obtain the following calculi, listed here in order of
increasing complexity:

� QTCB1: Supports relations Q1 and Q2.
� QTCB2: Supports relations Q1 through Q3.
� QTCC1: Supports relations Q1, Q2, Q4, and Q5.
� QTCC2: Supports relations Q1 through Q6.

For further explanation with respect to typical aspects of qualitative reasoning (e.g. dominance space, conceptual neigh-
borhood diagrams, composition tables), we refer to Van de Weghe [26].

3.2. Introducing QTC3D

When extending QTC from 2D to 3D, analogous constraints to those outlined above have to be devised. Distance con-
straints (Q1, Q2), Speed constraint (Q3), and Angle constraint (Q6) can be easily generalized. However, as previously men-
tioned, there is no obvious analogue to the Side constraints (Q4, Q5).

The Frenet–Serret frame was thus chosen as our main instrument, as it provides a rich description of the kinetic proper-
ties of an object moving along a continuous and differentiable trajectory. The frame consists of three orthogonal vectors (see
also Fig. 2 and Eqs. (I)–(III)):

t: the unit vector tangent to the curve;
n: the normal unit vector;
b: the binormal unit vector, i.e. a vector perpendicular to both t and n.



Fig. 2. Illustration of the Frenet–Serret frame.

Fig. 1. Trajectories of two MPOs.

Table 1
Constraints and their values for the MPOs of Fig. 1.

Constraint Value Explanation

Q1 � k is moving towards l
Q2 + l is moving away from k
Q3 � k is slower than l
Q4 + k is moving towards the right side of vector kl
Q5 � l is moving towards the left side of vector lk
Q6 � the angle between vk and vector kl is smaller than the angle between v l and vector lk

N. Mavridis et al. / Information Sciences 322 (2015) 20–30 23
The three vectors t;n, and b, create an orthonormal frame of reference for each point in the trajectory (Fig. 2). Most impor-
tantly, this is a non-inertial frame, and one can furthermore prove that it is particularly well behaved with regards to
Euclidean motions, i.e. rotations and translations.

Given two continuous three-dimensional trajectories s1ðsÞ and s2ðsÞ, where s is the continuous time variable, s is the
position parameter, and sðsÞ is twice continuously differentiable,2 the new QTC3D is constructed as follows:
2 If one wants smoothness, then C1 continuity is enough; but if one needs smoothness and continuous curvatures, then one needs C2 continuity. This is not
an extra requirement for specifically, but holds anywhere continuity of curvature is needed.
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STEP(1) Calculate signs ð�;0;þÞ for all constraints Q1, Q2, Q3, and Q6 as defined for QTC2D generalized from 2D to 3D;
STEP(2) Calculate the component vectors of the two Frenet–Serret frames, i.e. the tangents, normals, and binormals,

according to the following equations [20]:
t1ðsÞ ¼ ds1=dsð Þ=jds1=dsj t2ðsÞ ¼ ds2=dsð Þ=jds2=dsj ðIÞ
n1ðsÞ ¼ dt1=dsð Þ=jdt1=dsj n2ðsÞ ¼ dt2=dsð Þ=jdt2=dsj ðIIÞ
b1ðsÞ ¼ t1ðsÞ � n1ðsÞ b2ðsÞ ¼ t2ðsÞ � n2ðsÞ ðIIIÞ
Now, our aim is to transform the frame F1ðt1;n1;b1Þ of the first moving object, to the frame F2ðt2;n2;b2Þ of the second mov-
ing object at the same time stamp. We thus need to find a transformation T transforming the first frame to the second:
F2 ¼ TF1 ) T ¼ F2F�1
1 ðIVÞ
This transformation T can be decomposed as the product of three rotations, which are usually known in the aeronautics lit-
erature as the yaw w, pitch h, and roll u (i.e. the so-called Tait-Bryan angles), as illustrated in Fig. 3.

We thus need to compute the three angles corresponding to the component rotations that multiply out to T, as defined
below:
T ¼
r11 r12 r13

r21 r22 r23

r31 r32 r33

2
64

3
75

w ¼ atan2 r21; r11ð Þ; w 2 ð�p;p� ðVÞ

h ¼ atan2 �r31;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

32 þ r2
33

q� �
; h 2 ð�p;p�

u ¼ atan2 r32; r33ð Þ; u 2 ð�p;p�
It is easy to perform the inverse process and justify that the yaw, pitch, and roll rotations lead to a valid composite rota-
tion matrix. Consider the following rotations:
R wð Þ ¼
cos w � sin w 0
sin w cos w 0

0 0 1

0
B@

1
CA

R hð Þ ¼
cos h 0 sin h

0 1 0
� sin h 0 cos h

0
B@

1
CA ðVIÞ

R uð Þ ¼
1 0 0
0 cos u � sin u
0 sin u cos u

0
B@

1
CA
Performing the roll, pitch, and yaw rotations (in that order), would yield the following matrix [18], which corresponds to
our transformation T:
R w; h;uð Þ ¼
cos w cos h cos w sin h sin u� sin w cos u cos w sin h cos uþ sin w sinu
sin w cos h sin w sin h sin uþ cos w cos u sin w sin h cos u� cos w sinu
� sin h cos h sin u cos h cos u

0
B@

1
CA ðVIIÞ
Moving on, and in order to derive a meaningful qualitative representation for the quantitative representation of the three
angles (w; h;uÞ, we need to quantize all possible values of this triplet to a set of qualitative symbols, ð�;0;þÞ in QTC. For the
ideal case of continuous trajectories (i.e. sampled with infinite uncountable sampling rate, and without corruption by mea-
surement noise), we define the QTC symbols for each angle a 2 fw; h;ug:

� if a < 0 ? ‘�’,
� if a ¼ 0 ? ‘0’,
� if a > 0 ? ‘+’.

Thus, through this procedure, we derive the new QTC symbols Q7, Q8, Q9 for the angles w; h;u, respectively, which, in con-
junction with the above Q1, Q2, Q3, and Q6, comprise the full QTC3D representation Q1, Q2, Q3, Q6, Q7, Q8, Q9.



Fig. 3. Yaw, pitch, and roll angles.
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4. From ideal-continuous time to real-discrete time

In order to apply the above in real-world time-sampled trajectories, one can use the Discrete Frenet–Serret Frame [15,20].
If no three consecutive points of the discrete curve are collinear (i.e. t1 and t2 are not parallel), Eqs. (I)–(III) become the
following:
3 The
discuss

4 The
paper, t
t1ðsÞ ¼ ðx1 sþ 1ð Þ � x1ðsÞÞ=jx1 sþ 1ð Þ � x1ðsÞj
t2ðsÞ ¼ ðx2 sþ 1ð Þ � x2ðsÞÞ=jx2 sþ 1ð Þ � x2ðsÞj

ðVIIIÞ

b1ðsÞ ¼ t1 s� 1ð Þ � t1ðsÞð Þ=jt1 s� 1ð Þ � t1ðsÞj
b2ðsÞ ¼ t2 s� 1ð Þ � t2ðsÞð Þ=jt2 s� 1ð Þ � t2ðsÞj

ðIXÞ

n1ðsÞ ¼ b1ðsÞ � t1ðsÞ
n2ðsÞ ¼ b2ðsÞ � t2ðsÞ

ðXÞ
The discrete frames are:
F1ðsÞ ¼ ðt1ðsÞ;n1ðsÞ; b1ðsÞÞ; F2ðsÞ ¼ ðt2ðsÞ;n2ðsÞ;b2ðsÞÞ
The yaw, pitch, and roll angles are then calculated similarly to the continuous case. As can be seen in the equation below,
for the quantization of continuous angle values to the three discrete symbols ð�;0;þÞ, a threshold Th is used in this
real-world case.3 This is required in order to delineate a symmetric band around the zero value of the angles, so that numerical
deviations as well as measurement noise can be accounted for.

Thus, for a 2 fw; h;ug the mapping of values to symbols for the discrete case becomes:

� if a < �Th ? ‘�’,
� if �Th 6 a 6 Th ? ‘0’,
� if a > Th ? ‘+’.

In this way, we are able to derive meaningful QTC3D symbol sequences from real-world sampled trajectories.
5. A real-world example

In order to illustrate the utility of QTC3D, we have chosen to apply it in a domain where rich 3D trajectories with complex
interactions exist: bird flock flying. We utilize a micro-GPS derived dataset of pigeon flights from a recent paper published in
Nature [22]. This dataset contains 4 homing- and 11 free-flights of at least 10 individuals each. We consider in particular the
4 homing flights, where there exists a clear hierarchy of the roles of the pigeons. We then ask the following question: can
information about pairs of interacting trajectories encoded in QTC3D be used towards distinguishing leader–follower bird
pairs from other pairs? This is a typical interaction studied in reasoning about moving objects. In order to answer such a
question, we have performed the following procedure.

First, we selected appropriate trajectory pairs (all of which were sampled at a temporal resolution of 200 ms4), with and
without Leader–Follower (LF) relations. As an example, let us consider the first of these flights, flight #1. We plot in Fig. 4 the
trajectories of all pigeons of homing flight #1. Note that several pigeon trajectories have been truncated, effectively keeping only
choice of threshold is usually application-specific. The impact of choice, for this specific case, is clearly seen in Fig. 7 and some additional insights are
ed in Section 6. In practice, however, we have found that thresholds P4� are adequate.
5 Hz (i.e. 200 ms) sampling rate was an inherent limitation of the hardware. However, as justified in the supplementary material to the Nagy et al. [22]
his sampling rate was more than adequate for the purpose of analyzing leader/follower relations.
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Fig. 4. Truncated flight paths of all the pigeons of homing flight #1.
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2000 synchronized data points around the middle of the flight, in order to remove useless data before takeoff and after landing.
For the case of LF configurations, we would expect that a change in direction of the leader corresponds to a proportional change
in the direction of the follower. That is, if the leader pigeon moves towards a particular direction, then the follower one flights
on a parallel direction after a short delay, which depends on the position of the pigeon within the flock hierarchy. In general, to
compare these trajectories, one should consider this delay and temporally align the samples. However, in our case there is no
need for relative time-shifting of the trajectories, given that the follower response has a delay smaller than the 200 ms sampling
interval.

Upon observation of the trajectories for flight #1, we selected pigeon PH as the Leader. We can then classify the remaining
pigeons in two categories, according to whether they closely follow the flight patterns of the leader or they significantly devi-
ate from them:

(a) Followers: pigeons PA; PC ; PD; PF ; PJ; PK ; PL.
(b) Non Followers: pigeons PG; PI .

Thus, for flight #1, there exist 7 LF trajectory pairs, namely PH � PA; PH � PC ; PH � PD; PH � PF ; PH � PJ; PH � PK ; PH � PL, and
2 Leader–Non-Follower (LNF) trajectory pairs, PH � PG and PH � PI . For flight #2, again we have 1 leader, but this time 6 fol-
lowers, and 2 non-followers, thus giving 6 LF and 2 LNF pairs. In a similar way, we get 6 LF and 2 LNF for flight #3, and 7 LF
and 1 LNF pair for flight #4. Thus, the total number of trajectory pairs, arising from all four flights that we used, is 26 LF and 7
LNF.

We then extract the symbol distributions for all trajectory pairs. When we convert the trajectory pairs to QTC3D strings,
they will consist of 7-tuples of ð�;0;þÞ. The important information for our task is contained in the sub-string triplet
{Q7, Q8, Q9} of the full QTC3D 7-tuple; after all, this is what differentiates QTC3D from QTC2D. In this triplet there exist
33 ¼ 27 possible combinations of symbols. We try to estimate the probability distribution of these combinations by calcu-
lating a histogram based on their occurrences. Our ultimate goal in this section will be to differentiate between trajectory
pairs of LF and LNF roles: we will show this is possible using the ratio of entropies from the histograms of the QTC3D symbol
distributions of LF vs. LNF trajectories, while differentiation would not have been possible using the QTC2D symbols alone (i.e.
without the new symbols {Q7, Q8, Q9}).

First of all, we need to make an informed choice of the appropriate thresholds for the derivation of QTC3D. Towards that
purpose, we will first investigate the histograms of the distributions of the Tait-Bryan angles. Figs. 5 and 6 display the his-
tograms of the yaw, pitch, and roll angles, for the LF and LNF respectively, bundled in bins of approximately 8� each. We have
chosen this value in order to have enough samples for each bin, so that the resulting curve is smooth and closer to the actual
distribution.

In Figs. 5 and 6 (left) we see the frequency distribution of the yaw angles for the aforementioned case of homing flight #1,
and we can already identify how discriminative it can be for the possible categories of pairs. If we set the threshold Th ¼ 24�,
then the total probability mass created by the sum of the central three bins will map to the probability mass of the ‘0’



Fig. 5. Yaw, pitch, and roll for the cases of Leader ðPHÞ and a Follower ðPAÞ.
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symbol, while the bins on the right will map to the ‘+’ symbol and the bins on the left will map to ‘�’. Note that, in the LF case,
there will be a larger total mass for the ‘0’ symbol, as the sum of the three central bins for the LF case is larger than the sum of
the equivalent ones for the LNF case. Correspondingly, the total mass for each of the ‘+’ or ‘�’ symbols will be smaller for the
LF distribution when compared to the LNF one. Thus, if we were taking the entropy of the single symbol corresponding to the
yaw angle, the entropy of the LF distribution would be smaller than the entropy of the LNF.

In practice, though, we will use all three angles (yaw, pitch, and roll), not individually but in conjunction in order to create
the 33 ¼ 27 possible combinations of symbols, and we will take the entropy over this 27-symbol distribution (and not the
three entropies of the three 3-symbol distribution corresponding to each angle separately). As we shall see, when we com-
bine the symbols for all three angles, we will expect significantly different probability distributions. The key part is to choose
an appropriate threshold Th to get a meaningful band of ‘0’ symbols.

Because the LF behavior requires the tracking of the direction of the flight of the leader by the follower, we expect that
whenever this direction does not change, the follower will be aligned to it. This will happen not only in terms of direction,
but also in terms of velocity and acceleration, if the alignment between leader and follower is to remain and the distance
between the two is controlled by the follower with the goal of being kept constant. Thus, the two Frenet–Serret frames will
be almost aligned for the period of time that the leader is not changing significantly his trajectory. In this case, the Tait-Bryan
angles corresponding to the transformation needed to align one Frenet–Serret frame to the other will frequently have values
close to zero. Therefore, the resulting distribution of the quantized QTC symbols corresponding to these angles will exhibit
more triplets containing one or more ‘0’s for the LF case, as compared to the LNF one. In the latter case, the two Frenet–Serret
frames will be generally more unrelated, and thus the transformation needed to map one to the other will be more random.
In conclusion, we expect the distribution of QTC symbols for the yaw, pitch, and roll angles for the LNF case to be closer to
uniform (larger entropy) as compared to the symbol distribution for the LF case (smaller entropy, given that the distribution
is less uniform).

We then decided to investigate the entropies of the two QTC symbol distributions (i.e. the symbols corresponding to the
trajectory of the LF pair, and the symbols corresponding to the LNF pair) and to use these entropies ratio as a discriminative
feature for LF vs. LNF pairs. Let HðXÞ be the entropy of a discrete random variable X and pðxiÞ the probability that X takes the
QTC3D value xi:
HðXÞ ¼ �
X

i

pðxiÞlog2 pðxiÞ ðXIÞ
In particular, if HLF
i is the entropy of the i-th LF pair, with i = 1, . . . ,M, and HLNF

j is the entropy of the j-th LNF pair, with
j = 1, . . . ,N, the ratio q between the two mean entropies lLF and lLNF can be calculated as follows:
q ¼
PM

i¼1 HLF
iPN

j¼1 HLNF
j

� N
M
¼ lLF

lLNF
ðXIIÞ
We thus calculated the entropy of the three relevant QTC3D symbols Q7, Q8, and Q9 of all the trajectory pairs of the four
flights, i.e. 26 LF and 7 LNF symbol sequences. Indeed, our data indicated that for any appropriate choice of angle threshold
Th P 5�, the mean entropy in the LNF case is clearly larger than the mean of the LF’s one. For example, with a chosen angle



Fig. 6. Yaw, pitch, and roll for the cases of Leader ðPHÞ and a Non-Follower ðPIÞ.

Fig. 7. Entropy means l and standard-deviations r, for all LF and LNF pairs in the 4 homing flights, as function of the quantization threshold Th for the ‘0’
symbols, and impact on their ratio, assuming that we only use properties Q7, Q8, and Q9 of QTC3D. The slight rise at the beginning is easy to understand:
before some meaningful quantization. ‘0’ symbols are almost completely missing, hence the smaller entropy. Once we account for that, however, the
entropy quickly drops and, as we discuss in the text, in our dataset the symbol sequences from LNF pairs have always a higher entropy than LF pairs.
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threshold Th ¼ 10�, the mean entropy for the LF case was 3.36, compared to 4.01 for the LNF case. This can be seen in Fig. 7,
which plots the mean entropies as a function of the threshold Th for the two cases, as well as their ratio q. Furthermore, from
the dotted one-standard-deviation bands around the means, also shown in Fig. 7, we clearly have good separation of the dis-
tributions of entropy for LF vs. LNF. Therefore, the introduction of the novel symbols Q7, Q8, and Q9 in QTC3D, which accounts
for the rotation angles required for matching the Frenet–Serret frames of the moving objects, provides a clear discrimination
between qualitatively different pairs of trajectories.

As a further and final elaboration of this result, we performed statistical significance testing, to inquire whether there was
support for the hypothesis lLF < lLNF (i.e. mean entropy of LF smaller than mean entropy of LNF). After removing one clear out-
lier from the 26 LF pairs through a Grubbs test with probability P < 0:001, followed by successful normality testing, we have
verified through t-testing that our hypothesis holds with P < 1:5 � 10�5, for threshold Th ¼ 10�. The same hypothesis still holds
with significance P < 0:05 for a wide range of threshold values, namely any value above Th > 7�, even without outlier removal.
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Therefore, the entropy ratio criterion generalizes well, and the novel symbols Q7, Q8 and Q9, which were not part of the tradi-
tional QTC2D, have certainly contributed to the power and applicability of QTC3D to full three-dimensional interactions.
6. Discussion and future steps

Having introduced QTC3D, and having illustrated its benefits through the bird flight scenario using real-world trajectories,
let us now discuss an important point, which is concerned with the need for thresholding. In real world situations, most
often apart from time sampling (discrete-time QTC) there is also noise in our trajectory measurements. The problem is that
small perturbations in the positions of the MPOs may significantly affect the exported QTC symbols. As an example, consider
the cases where two objects would be moving with the same speed. Clearly, even the slightest noise will cause change to the
‘0’ symbol for the speed constraint to become either ‘+’ or ‘�’, and this is unacceptable. Thus, it is very important to define
thresholds around zero, but how to set these thresholds? Note that, because of the nature of the equations and the calcula-
tions that they imply (Euclidean distances for the distance constraint, cross-products for the Side constraints, etc.) it is not
possible to define a meaningful universal threshold for all the QTC constraints.

If we can model the statistical behavior of the noise we are dealing with, we can attempt to fine-tune the thresholds
accordingly (analytically or empirically). As a qualitative criterion for optimal tuning, one could try to minimize a reconstruc-
tion error, such as the symbol difference between a noise-free zero-threshold QTC sequence and the noisy thresholded ver-
sion of the sequence. Alternatively, other application-specific criteria can be used for tuning the threshold, including for
example variations of discriminability between sequences corresponding to different categories.

Regarding potential application scenarios, an obvious domain would be modeling of insects, airplanes, and unmanned
aerial vehicles (UAVs) flight, or even fishes and unmanned underwater vehicles (UUVs). Furthermore, and quite importantly,
QTC3D can be utilized not only towards the analysis of trajectories, as is the case in our bird flight example of the previous
section, but also towards synthesis: i.e. given a specific QTC sequence, creating behavioral controllers for a robot or UAV/UUV
that can perform the correct movements in response to a moving interaction partner, in order to satisfy the prescribed QTC
sequence. An example of hand-crafted controller informed by QTC analysis and applied to Human–Robot Spatial Interaction
can be found in Bellotto et al. [4]. For the automated solution of the more general problem, which is the generation of pro-
totypical trajectories of two objects satisfying a given QTC sequence, one needs a solution to the so-called ‘‘Inverse QTC prob-
lem’’, which was for the first time provided in Iliopoulos et al. [16].

Other interesting application domains are the arts and sports. Group dance movements, for example, contain intricate yet
often highly structured patterns of motion; QTC could be used not only towards analysis of human relative trajectories as
moving point objects, but also by placing moving point objects at important human body points, and then describing the
relative motions within a dancer’s body or across dancer’s body points [6]. Similar considerations can be made for sports
analytics, where QTC3D ould find extensive application, given the importance of the third dimension in this domain.

In terms of future steps, we are currently working not only with the theoretical formalization of thresholding techniques
and generalization of the inverse QTC problem, but also with the practical application of QTC in various domains (e.g.
robotics, sport, etc.), where a multitude of interesting extensions remain to be explored towards the efficient handling of
multiple moving point objects, including groups and centers of symmetry of objects, opening up opportunities for wide-
spread applications of QTC3D.
7. Conclusion

Spatial interactions between natural or artificial agents (humans, animals, or machines) can be found almost everywhere,
and carry information of high value to human or electronic observers. However, not all the information contained in a pair of
continuous trajectories is important and thus the need arises for adaptive abstractions, such as qualitative descriptions of
interaction trajectories.

In this paper we have presented QTC3D, a novel qualitative trajectory calculus that can deal with full three-dimensional
interactions, thus moving beyond the limitations of the traditional two-dimensional approach. QTC3D is based on transfor-
mations of the Frenet–Serret frames accompanying the trajectories of the moving objects. Apart from the theoretical expo-
sition, including definition and properties, as well as computational aspects, we have also presented in detail a real-world
application of QTC3D towards modeling bird flight, using real trajectories, illustrating the benefits of our approach. This opens
up a wide range of real-world applications where such representation provides the catalyst for effective analysis and syn-
thesis of complex spatial group behaviors.
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